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Abstract

In this paper, we prove a convergence result for a discretization of the three-dimensional stationary com-
pressible Navier-Stokes equations assuming an ideal gas pressure law p(p) = ap” with v > % It is the first
convergence result for a numerical method with adiabatic exponents -y less than 3 when the space dimension
is three. The considered numerical scheme combines finite volume techniques for the convection with the
Crouzeix-Raviart finite element for the diffusion. A linearized version of the scheme is implemented in the
industrial software CALIF®S developed by the french Institut de Radioprotection et de Streté Nucléaire
(IRSN).
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1 Introduction

Let Q be an open bounded connected subset of R¢, with d = 2 or 3, with Lipschitz boundary. We
consider the system of stationary isentropic Navier-Stokes equations, posed for o € €

div(pu) = 0, (1.1a)
divipu @ u) — pAu — (u+ A)V(divu) + aVp? = f. (1.1b)
The quantities p > 0 and u = (uy,..,uq)? are respectively the density and velocity of the fluid,
while f is an external force. The pressure satisfies the ideal gas law with a > 0 and v > 1. Equation
(1.1a) expresses the local conservation of the mass of the fluid while equation (1.1b) expresses the
local balance between momentum and forces. The viscosity coefficients p and A are such that u > 0
and p+ A > 0. System (1.1) is complemented with homogeneous Dirichlet boundary conditions on
the velocity:

u|pn =0, (1.2)

and the following average density constraint (up to the normalization by || it is the same as
prescribing the total mass)

1
— dx = p* . 1.
|Q|/Q’“” P >0 (1:3)

Regarding the theoretical results on these equations, the existence of weak solutions has been
first proved by Lions in [33] for adiabatic exponents v > g in dimension d = 3, a result which
has then been extended to coefficients v € (%, %) by Novo and Novotny in [34]. It is also worth
mentioning that a recent paper of Plotnikov and Weigant [36] improves these previous results, but

this improvement will be not treated in this paper.

From the numerical viewpoint, compressible fluid equations have been intensively studied and
several approximations have been designed in the last few years. In this paper, we consider a
stabilized (and stationary) version of a numerical scheme, a linearized version of which (following



pressure correction techniques) is implemented in the industrial software CALIF3S [3] developed
by the french Institut de Radioprotection et de Sireté Nucléaire (IRSN, a research center devoted
to nuclear safety). This scheme falls in the class of staggered discretizations in the sense that the
scalar variables (density, pressure) are associated with the cells of a primal mesh M while the
vectorial variables (velocity, external force) are associated with the set £ of faces of the primal
mesh. Such decoupling, associated here with a Crouzeix-Raviart finite element discretization [5]
(but other non-conforming finite elements are possible, such as the Rannacher-Turek discretization
[37]) of the viscous stress tensor, provides a discrete pressure estimate, thanks to the so-called
discrete inf-sup stability condition (see for instance [24]). This condition, which is also satisfied
by the MAC scheme (see [25], [26], [27]) on structured grids, ensures the unconditional stability
of the scheme in almost incompressible regimes (for instance in the low Mach regime, see [19] and
[28]). Let us mention that, contrary to the MAC scheme (where the domain € is assumed to be a
finite union of orthogonal parallelepipeds, and the mesh is composed by a structured partition of
rectangular parallelepipeds with cell faces normal to the coordinate axis), the scheme considered in
this paper is able to cope with unstructured meshes.

In its reduced form, our numerical scheme reads

diVM (pu) + Tsltab + TSQtab = 07

dive(pu @ u) — pAgu — (4 A)(V o div)gu + aVe(p?) + T3, = e f,

where, as suggested by the notations used for the discrete differential operators, the (scalar) mass
equation is discretized on the primal mesh M, whereas the (vectorial) momentum equation is
discretized on a dual mesh associated with the set of faces €.

The finite element discretization for the viscous stress tensor is here coupled with finite volume
discretizations of the convective terms which allow, thanks to standard techniques, to obtain dis-
crete convection operators satisfying maximum principles (e.g. [30]). The discrete mass convection
operator is a standard finite volume operator defined on the cells of the primal mesh M while the
discrete momentum convection operator is also a finite volume operator written on dual cells, i.e.
cells centered at the location of the velocity unknowns, namely the faces £. A difficulty implied by
such staggered discretization lies in the fact that, as in the continuous case, the derivation of the
energy inequality needs that a mass balance equation be satisfied on the same (dual) cells, while
the mass balance in the scheme is naturally written on the primal cells. A procedure has therefore
been developed to define the density on the dual mesh cells and the mass fluxes through the dual
faces from the primal cell density and the primal faces mass fluxes, which ensures a discrete mass
balance on dual cells.

Compared to the continuous problem (1.1), the discrete equations contain three additional
“stabilization” terms Tsitab that ensure the convergence (up to extracting a subsequence) of the
numerical solutions towards weak solutions of (1.1)-(1.2)-(1.3) as the mesh size tends to 0. The
first stabilization term 77} | guarantees the total mass constraint (1.3) at the discrete level. The
second stabilization term 772, , which is a discrete counterpart of a diffusion term for the density,
provides an additional (mesh dependent) estimate on the discrete gradient of the density. As we
will explain in details in the core of the paper, this artificial discrete diffusion is used to show the
crucial convergence property satisfied by the effective viscous flux. The last stabilization term T3,
is an artificial pressure gradient which is necessary only if v < 3. The precise definitions of the
discrete operators and stabilization terms are given in Section 3.



There exist in the literature several recent convergence results for finite element or mixed finite
volume - finite element schemes. In [13], Eymard et al. (see also [20] for the particular case
v =1, i.e. a linear pressure term) study the compressible Stokes equations, that correspond to
(1.1) where the nonlinear convective term div(pu ® wu) is neglected. At the discrete level, two
stabilization terms, namely, Tsltab and a term similar to Tszmb, are introduced for the convergence
analysis of the numerical scheme. In the case of Equations (1.1)-(1.2)-(1.3), i.e. with the additional
convective term, Gallouét et al. prove in the recent paper [22] the convergence of the MAC scheme
under the condition v > 3, with only one stabilization term 77 , ensuring the mass constraint
(1.3) (we refer to Remark 5.1 below which explains why 772 , is unnecessary for the MAC scheme).
Finally, Karper proved in [29] (see also the recent book [15]) a convergence result in the evolution
case, again for v > 3, and an equivalent of the artificial diffusion term 772, is also introduced (note
that in the evolutionary case there is no additional mass constraint and thus no need for T2, ).
Let us mention that for the evolutionary case, error estimates are available in [23] for the whole
range v > 5. For values of v < 2 (more precisely 7 < 2), convergence results can be found in [16]
and [17] within the framework of dissipative measure-valued solutions, a “weaker” framework than

ours.

To the best of our knowledge, our result is the first convergence result in the three-dimensional
case for values v € (2, 3] within the framework of weak solutions with finite energy (see Definition
2.1). Tt provides an alternative proof of the existence result obtained by Lions or by Novo and
Novotny. Compared to the previous numerical studies dealing with coefficients v > 3, it requires
the introduction of a third stabilization term Tf’tab, an artificial pressure term weighted by some
power of the mesh size: h®Vg(p!) with T' > 3. Note that the stabilization terms 72,, and T3,

sta
are not implemented in practice and are introduced here for the convergence analysis.

Let us emphasize that the evolution case is beyond the scope of this paper and left for future
work.

The paper is organized as follows: in Section 2, we present the main ingredients for the analysis
of the continuous problem (1.1)-(1.2)-(1.3). This section does not present any substantial novelty
compared to the work of Novo and Novotny [34], and the reader already familiar with the analysis
of the compressible Navier-Stokes equations can directly pass to the next sections concerning the
discrete problem. Then, in Section 3, we introduce our numerical scheme and state precisely our
main convergence result. We derive in Section 4 mesh independent estimates and show the existence
of solutions to the numerical scheme. Finally, Section 5 is devoted to the proof of convergence of
the numerical method as the mesh size tends to 0. We provide in the Appendix additional material
and proofs.

2 The continuous setting

The aim of this section is to present the main ingredients involved in the analysis of the continuous
problem (1.1)-(1.2)-(1.3) for readers who are not familiar with compressible Navier-Stokes equa-
tions. Although the existence theory of weak solutions to these equations is now well understood
since the works of Lions [33] and Feireis] [14] (see also [35]), the analysis developed there involves
advanced tools (such as weak compactness methods based on energy estimates, renormalized solu-
tions, effective viscous flux, etc.) that are to our opinion worth recalling. Especially as these tools
will be also crucial in the convergence analysis of our numerical scheme.



It turns out that the estimates and compactness arguments differ significantly according to the
value of the adiabatic exponent v appearing in the pressure law. For d = 3 and ~ > 3, the case
treated in previous numerical studies, a sketch of the proof of the stability of weak solutions can be
found for instance in [22]. We focus here, as in the other sections, on the case d = 3 and v € (%, 3]
which is the case covered by the study of Novo and Novotny.

Essentially, the minimal value v* = 3 is the one that ensures a control of the pressure p? and
of the convective term pu ® w in L*(€2). The value v* = 2 exhibited by Lions corresponds to
the minimal exponent guaranteeing that p is controlled in L?(£2). As we will explain later on (see
Remark 2.4 below), this control is required to prove that weak solutions are renormalized solutions.
This constraint on v has been relaxed by Novo, Novotny [34] (and Feireisl [14] in the evolutionary
case) to reach vy > % which corresponds to the minimal exponent ensuring that pu ® uw is controlled
in LP(Q), with p > 1. The interested reader is also referred to the paper of Plotnikov and Weigant
[36] for the case 1 <y < 2, case which will not be treated in the present paper.

As said before, this section does not present any substantial novelty compared to Novo and
Novotny’s work and the reader already familiar with the analysis of compressible Navier-Stokes
equations can directly pass to the next sections concerning the discrete problem. Note however
that for numerical purposes, we present below an original treatment of the convective term in
the analysis of the effective viscous flux (see Subsection 2.4.1). This alternative method allows to
circumvent the use of abstract tools for the compensated compactness theory, namely the famous
Div-Curl Lemma and a Commutator Lemma (see the method employed by Novotny and Straskraba
in [35] Section 4.4). These tools are indeed a little bit cumbersome to adapt in the discrete setting
(although this has been achieved by Karper in [29, 15] for the evolutionary case), which motivates
our alternative method based on a regularization of the velocity.

This section is organized as follows: after recalling the classical definition of weak solutions to
problem (1.1)-(1.2)-(1.3), we derive a priori estimates and show the stability of weak solutions.
In the last subsection we explain how to approximate (1.1) in order to construct effectively weak
solutions.

2.1 Definition of weak solutions, stability result

Definition 2.1. Let Q be a Lipschitz bounded domain of R3. Let v > % Let f € L? (Q) and p* > 0.
A pair (p,u) € LPO=D(Q) x H{(Q) is said to be a weak solution to Problem (1.1)-(1.2)-(1.3) if it
satisfies:

Positivity of the density and global mass constraint:
1
p>0ae in Q and —/ pdx = p*. (2.1)
€2 Jo

Equations (1.1a)—(1.1b) are satisfied in the weak sense:

/ pu-Vodr =0 Vo € C° (), (2.2)
Q

—/pu(X)u:V'ud:n—a//fY divvd:c—l—,u/Vu:Vvda:
Q Q Q

Jr()\Jr,u)/divu divvd:c:/f~vdm, Vo € C°(Q)3. (2.3)
Q Q



The pair (p,u) € L2O~D(Q) x H{(Q) is said to be a weak solution with bounded energy if, in
addition to the previous conditions, it satisfies the energy inequality

,u/ |Vul?dx + () + u)/ (divu)*de < [ f- udx (2.4)
Q Q Q

Finally the pair (p,u) € L30~(Q) x HY(Q) is said to be a weak renormalized solution if, in
addition to the previous conditions and for any b € C°([0,+00)) N C((0,+00)) such that

=20, Ao < 1 ift <1
HOIEX S ’ 2.5
| ()|_{ct/\1, 1< 30 > (25)
the pair (p,u) satisfies
div(b(p)u) + ('(p)p — b(p))divu =0 in D'(R?), (2.6)

where p and w have been extended by 0 outside €.

Remark 2.1. In the whole paper, we adopt the following notations:
H{(Q):=H}(Q),  WP(Q) = WyP(Q)?,  LP(Q):=LP(Q)?, pel,+o).

Remark 2.2. Since v > 2, we have pu € L5 (Q) and by density (2.2) is valid for all ¢ € Wy°().
In addition, pu @ w € L*(Q)3 and p7 € L*T1(Q) for some n > 0 so that (2.3) is valid for all

ve Wyl (Q) for all g € [1,+00).

Remark 2.3. Ford=3,~v >3, andd =2, v > 1, we would get better integrability on p. Precisely,
we would have p € L27(Q).

Remark 2.4.

o When v is large enough, namely v > %, the following lemma, initially proved by Di Perna

and Lions [7], shows that any weak solution with finite energy of (1.1) is a renormalized weak
solution.

Lemma 2.1 ([35] Lemma 3.3). Assume that v > 2 and let p € Lf’c)(z_l)(R3), u € H (R3)
satisfying the continuity equation

div(pu) =0 in D'(R®).
Then, equation (2.6) holds for any b € C°([0, +00)) N C*((0,+00)) satisfying (2.5).

More precisely, the justification of the renormalized equation requires a preliminary reqular-
ization of the density. The commutator term resulting from this regularization involves in
particular products like pdivu which are then controlled precisely under the condition that
p € LE (R?) since divu € L2 _(R3) (see for instance [35] Lemma 3.1). This condition is
achieved as soon as 3(y — 1) > 2, i.e. v > 3. The interested reader is also referred to [18]

(Appendixz B) for a discussion on the criticality of the assumption on p.



o If the pair (p,u) € L3O=D(Q) x HY(Q) is a renormalized solution which satisfies, instead of
the continuity equation (2.2),

div(pu) = g in D'(Q) for some g € Li,.(R?),

then, extending p, u by zero outside Q (denoting again p,u,g the extended functions), the
previous equation also holds in D'(R3). Moreover, for any b € C'([0,+00)) satisfying (2.5),
denoting by; the truncated function such that

ey ift< M,
bM(t)_{b(M) ift> M,

then we have
div(bar (p)u) + ([barl'y (9)p — bar(p))dives = g [bar]y (o) in D' (R?) (2.7)

where
b(t) ift <M,

o]’ (8) = { 0 ift> M.

We now focus on the stability of weak solutions the proof of which is essential for the analysis
of the numerical scheme in the next sections. In Section 2.5, some elements are given for the
approximation procedure that allows to construct such weak solutions.

Theorem 2.2. Let Q be a Lipschitz bounded domain of R®. Assume that vy € (%,3]. Consider
sequences of external forces (f,,)nen C L?(Q) and masses (p})nen C R, and an associated sequence
(Pn, Un)nen of renormalized weak solutions with bounded energy. Assume that pf — p* > 0 and
that (f,)nen converges strongly in L2(Q) to f. Then, there exist (p,u) € L30~D(Q) x H§(Q) and

a subsequence of (pn,Un)nen, still denoted (pn, Wn)nen such that:
o The sequence (un)nen converges to w in L1(Q) for all g € [1,6),

e The sequence (pp)nen converges to p in LI(Q) for all g € [1,3(y—1)) and weakly in L3O =1(Q),

. (=1
e The sequence (p) )nen converges to p7 in L1(Q) for all g € [1, w) and weakly in L5 (Q),

o The pair (p,u) is a weak solution of Problem (1.1)-(1.2)-(1.3) with finite energy.

The proof of Theorem 2.2 is divided into four steps: first we derive the basic uniform estimates
which enable us in the next step to derive compactness results on the sequence (py, Up)nen and to
pass to the limit in the mass and momentum equations as n — +oo. Then, we prove some weak
compactness property on the “effective viscous flux” which eventually allows us to prove the strong
convergence of the density and to pass to the limit in the equation of state (i.e. in the pressure
law).



2.2 Uniform estimates

Proposition 2.3 (Control of the velocity). Let Q be a Lipschitz bounded domain of R3. Assume
that v € (%, 3]. Let (pn, Un)nen be the sequence defined in Theorem 2.2. Then, we have the following
a priori control on the velocity:

[unlley @) < OO ([Fnlliz@))nen) <€, ¥neN. (2.8)

Proof. The result directly follows from the energy inequality (2.4), the Poincaré inequality and
Young’s inequality. O

An additional estimate has to be derived to get a control on the pressure (and thus on the
density). To that end, we define for ¢ € (1, +00)

1
Q
and we recall the following result.

Lemma 2.4. Let Q be a bounded Lipschitz domain of R, d > 1. Then, there exists a linear
operator B depending only on  with the following properties:

(i) For all g € (1,+00),
B:LYQ) — Wyi(RQ).

(ii) For all q € (1,+00) and p € LE(Q),
div(Bp) = p, a.e. in Q.

(iii) For all q € (1,400), there exists C' = C(q,Y), such that for any p € LI(Q):
|Bp|w1,q(9) <C ”p”Lq(Q)'

Operator B is the so-called Bogovskii operator. The interested reader is referred to [35] (Chap-
ter 3.3) for a proof and additional properties on this operator. In particular, the operator B is
independent of q.

Proposition 2.5 (Control of the density and pressure). Let Q2 be a Lipschitz bounded domain of
R3. Assume that v € (%,3] Let (pn,Un)nen be the sequence defined in Theorem 2.2. Then, we
have the following a priori estimate on the density: there exists a constant C' such that:

||p7LHL3(’Y—1)(Q) <C, Vn € N. (2.9)

3(v—1)

().

As a consequence, the pressure (p;))nen is controlled in L



Proof. Let us set (recall that we focus here on the case v € (2, 3])

2y -3
Y

Observe that (1 +7n) = 3(y —1). Let n € N and define P, = p). Applying Lemma 2.4 to
P,— < P, > and using the resulting field v,, = B(P,— < P,, >) as a test function in (2.3), one gets

a/ (P da = i/p%/ (pZ)"da:—/pnun(@un:andw—i—u/ Vu, : Vv, dz
Q 12 Jo Q Q Q
—|—()\—|—,u)/divun divvndw—/ fn-vndx (2.10)
Q Q

=L+ - -+1Is.

n= € (0,1].

Before estimating the various integrals of the right-hand side, note that from Lemma 2.4
[VUnllLa)e < Clloa"= < " >lio)

1
< CIo)™ sy + s
< C”pn”LH—n

provided that

l<q< Lty _30y-1)
n 2y -3

In particular, since v € (%, 3], we have

3(y—1)
2y -3

>2 and thus  [[Vvullpeops < CloRIL (o

We use this control to estimate the integrals I3, Iy and I5:

s + L + Is| < C([Vnllre iy + 1Fnlle @) [vnlwe 2@
< C(”VUWHL?(Q)3 + an||L2(Q))||PZ:,||21+77(Q)

1+
< c + 7||anL11n(Q

using Young’s inequality and the control of the velocity (2.8). It remains to estimate the integrals
I, and I,. We first have

1l = €@, ( [ 5@ ) 11y < Cla o1 0

and by an interpolation inequality

_ 1 T
n < n”“ m) |70 with —=—+——~4+(1-r
lonll7- () iz HLl(Q) llonl{ ¢ +m)(Q) v v +1) ( )
that is N1 9 3
_O0=DAED) oy for g 223
y(1+n) -1 g



Since r < 1, we can use Young’s inequality and the control of the mass (1.3) to deduce that

a 1+
11 < CllpAlILien @131y < FIPRNIL ) + C-

Finally, the integral of the convective term is controlled as follows:

L] < C||ﬂn||m<1+n>(g)||unHi6(Q)||VUn||L1j]" @)°
< CHPZ”ML(Q)Hun”iﬁ(g)||PZ||£1+n(Q)
< CllunllZo ey 1921 e
so that, by the control of the velocity and by Young’s inequality (v > 1) :

a 1+
|| < C+ Z||pZL||LlfW(Q)'

Coming back to (2.10) and gathering all the previous estimates, we have
V147 3 V147
o [ (p)rdw <O+ a [ ()t de
Q Q
As a consequence, we deduce the control of the density and the pressure (we recall that n = #)

lonllsi ey + 3] s | <C:

2.3 Passing to the limit in the mass and momentum equations
Thanks to the previously derived estimates, we have the following result.

Proposition 2.6. Let Q be a Lipschitz bounded domain of R3. Assume that v € (%73]. Let

(P> Un)nen be the sequence defined in Theorem 2.2. There exist (p,u,p?) € L3O =D(Q) x H{(Q) x
~—1

L3( - (Q) such that up to extraction of a subsequence, the following convergences hold as n — +o0:

w, —u  weakly in HY(Q) and strongly in LY(Q), Vq € [1,6),
pn — p  weakly in L3("’*1)(Q),

().

Combining the weak convergence of the density and the strong convergence of the velocity we have

3(v=1)

pr— p7  weakly in L

Py — pu  weakly in LY(Q), Vqell, 6(,7_:11)), (2.11)
Pty @ Up — pu®@u  weakly in LY(Q)*, Vg e[l, W) (2.12)

Passing to the limit n — +00 in the mass constraint and in in the weak formulation of the mass
and momentum equations, the triplet (p,w, pY) is seen to satisfy:

10



Positivity of the density and global mass constraint:
1
p>0ae in Q and —/ pdx = p*. (2.13)
€ Jo

Continuity and the momentum equations in the weak sense:

/ pu-Vodr =0 Vo € C°(Q), (2.14)
)

—/pu@u:Vvdw—a/ﬁdivvda:—i—,u/Vu:Vvd:B
Q Q Q

+ (A + ,u)/ divu divvode = [ f-vde, Yo € C°(Q)%. (2.15)
Q Q

Moreover the energy inequality is satisfied at the limit:

u/ﬂ|Vu|2da:+()\+u)/ﬂ(divu)2dacS/Qf-uda:. (2.16)

Remark 2.5. For vy > % we guarantee that @ > 1 and thus the convective term in (2.15) is
such that
pu@u: Vo e L' (Q) forsome r>1 YoveWy™(Q).

To complete the proof of Theorem 2.2, it remains to identify the limit pressure p7 in (2.15),
that is to pass to the limit in the equation of state and prove that
PV =p7 ae. inQ (2.17)

which is equivalent to proving the strong convergence of the density towards its weak limit.

2.4 Passing to the limit in the equation of state

This is classically obtained in two steps: first by proving some weak compactness property satisfied
by the so-called effective viscous flux defined as (2u + A)divu — ap”, and then, by using the
monotonicity of the pressure to deduce the strong convergence of the sequence of densities (py, )nen-

2.4.1 Weak compactness of the effective viscous flux
Let us first recall the definition of the curl operator, and a useful identity linked to this operator.

Lemma 2.7 (A differential identity). Let Q be a Lipschitz bounded domain of R3. For a =
(al, as, ag)T andb = (bl, bg, b3)T m R3 we denote anNb = (agbg—a3b2, agbl—albg, albg—agbl)T S R?’.
For a vector valued function v = (vi,vs,v3)T, denote curlv = V Av where V = (01, 0,03)T. With
these notations, if u € H () and v € HY(Q), the following identity holds:

/Vu:Vvdw:/divudivv dm+/curlu-curlv dx
Q Q Q

+ (Von) - -u do(z) + curlv - (u An) do(x) — / divo (u-n) do(x). (2.18)
o9 o0 GI9)

11



If u € HY(Q) and v € HY(Q), this identity simplifies to:

/Vu :Vodx = / divudivo dw+/ curlwu - curlv de. (2.19)
Q Q Q

We shall also need the next result.

Lemma 2.8. Let Q be a bounded open set of R®. Then, there exists a linear operator A with the
following properties:

(i) For all g € (1,400),
A LIQ) — WH(Q).

(ii) For all g € (1,400) and p € LI(Q),
div(Ap) = p, and curl(Ap) =0, a.e. in Q.
(iii) For all g € (1,400), there exists C = C(q,Q), such that for any p € LY(Q):

|~Ap‘w1,q(9) <C ||P||Lq(g)-

Proof. A solution is given by Ap := VA~(p), where A~! is defined as the inverse of the Laplacian
on R3, here applied to p extended by 0 outside 2. The reader is referred to [35] Section 4.4.1 for
properties of the operator A. In particular the operator A does not depend on gq. O

Proposition 2.9. Let Q be a Lipschitz bounded domain of R3. Assume that v € (%73]. Let
(Pn, Un)nen be the sequence defined in Theorem 2.2. For k € N*, define

[t oiftefok),
Tilt) = { k ifte [k, +o0). (2.20)

The sequence (T (pn))nen is bounded in L°(Q2) and up to extracting a subsequence, it converges for
the weak-* topology in L>°(Q) towards some function denoted Ty (p). Then the following identity
holds:

lim (2p+ ) divu, — ap)) Ti(py) ¢ de

n—-+oo Q

= /Q (2u+ ) divu — ap?)Ti(p)pdz, Vo € CZ(Q). (2.21)

Proof of Proposition 2.9. Let k € N*. For n € N, let w,, = ATy(p,) be the field associated with
Ty (pr) through Lemma 2.8. We have

div w, = Tk(pn), curl w, =0, (w,)nen is bounded in WH4(Q) Vg € (1, +00).
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Moreover, (wp)nen is bounded in L*®°(Q2) and up to extracting a subsequence, as n — +oo, it
strongly converges in L4(Q) and weakly in W4(Q) for all ¢ € (1,+00) towards some function w
satisfying:

divw =Ti(p) and curl w=0. (2.22)
Let ¢ € C°(Q). Considering in (2.3) the test function v, = ¢w,, we get:

- / Pnln @ Uy, : V(pwy,) de — a/ pyr div(¢w,) dx + u/ Vu, : V(pw,)dz
Q Q Q
+ A+ u)/ div u,, div(¢w,,)dx = / - (ow,)dz.
Q Q

Using the formula (2.19) and the fact that div(¢w,,) = Ti(pn)¢+w, - V¢ and curl(¢pw,,) = L(¢)ws,
where L(¢) is a matrix involving first order derivatives of ¢, we obtain:

/ (ap) — 2p + N)divu,) Tr(pn )¢ da
Q
= —/ (ap) — 2p+ N)divu,)w, - Vodz + u/ curl u,, - curl(pw,) dz
Q Q
— / Prtbn @ Uy, V(ow,) de —/ I (pw,)de
Q Q
= —/ (ap) — 2p+ N)divu,)w, - Vodz + u/ curlu,, - L(¢)w,, dz
Q Q
~ [ o Vowda — [, (0w, de
Q Q

Thanks to the previous estimates and convergences (see Prop. 2.6), we are allowed to pass to the
limit as n = +o00

lim [ (ap), — (2p+ A)divu,) T (pn) ¢ dz

n—oo

:_/ (aﬁ—(2u+A)divu)w~V¢dm+u/Curlu'L(¢)’lUdm
Q Q

— lim [ ppu, @ u, : V(ow,)dr — /Q I (pw)de.

n—oo Q

An analogous equation can be obtained from the limit momentum equation (2.15) with the test
function ¢w. It reads:

/Q (ap” — (2u+ N)divu) Ti(p)pdx
- _/ (ap” — (2p + N)divu)w - Vodz + u/ curl(u) - L(¢)w de
Q

Q

- [ uew: Vwde— [ £ (ow)de.
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Comparing the two expressions, we get

lim (ap) — (2p + N)divuy,) Ty (py )¢ de

n— oo Q
= / (ap? — (2p + N)divu) Ty (p)¢ de
Q

— lim [ ppu, @ u, : V(pw,)dz + / pu @ u: V(pw)dex.
Q

n—o0 Q

Hence it remains to show the two last integrals are equal, which is not direct since we have only
weak convergence on (ppu,)nen and (Vwy,)nen-

This convective term is usually treated with compensated compactness tools by means of Div-
Curl and commutator lemmas (see [35] Section 4.4). In the case v > 3, a simpler proof is presented
in [22] which enables to bypass the use of these tools. Let us first explain the method used in [22]
for the case v > 3.

We begin with the observation that we can rewrite the integral of the convective term thanks
to the continuity equation as

/ Py @ Uy, V(ow,)de = —/ (pnuy - V)u, - (ow,) de.
Q Q

For v > 3, (pn)nen is bounded in L(Q) for some ¢ > 6 and the quantity ((pntn + V)Up)nen 18
therefore bounded in L" () for some r > g. Let us denote Q € L"(Q) its weak limit. Since (W, )nen
converges strongly to w in L6(Q), we obtain (after extracting a subsequence)

lim (pntty - Vuy, - (pwy,) de = /QQ - (pw) dee.

n—+oo Jo

On the other hand, for any fixed test function v € W3°(Q2), it holds

/(pnun~V)unovdm:f/pnun®un:V'Uda:—>f/pu®u:Vvdw as n — +o0o
Q Q Q

combining the weak convergence of (pntn)nen in L2 (Q) and the strong convergence of (ty, )nen in
Li(Q), for all ¢ < 6. Since the continuity equation is satisfied by the limit pair (p,u) we have

—/pu@u:Vvdmz/(pu~V)u~'uda:
Q Q

with (pu - V)u € L"(Q) and thus we identify @ = (pu - V)u, which concludes the proof in the case
v > 3.

In our case, v € (2, 3], we do not ensure that ((pnu, - V)un)neN is bounded in L"(Q?) for some
r > g. We adapt the previous arguments to our case v € (%,3] by using a regularization of the
velocity w,,. Let us first extend u,, and u by 0 on R? \  and introduce the regularized velocities

Up,5 = Up * w5 and us = u * ws, where (ws)s>o is a mollifying sequence. By standard properties
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of the convolution and our a priori control of the velocity u,, the following convergences hold (see
for instance [15] Lemma 5 p.75 where a regularization of the velocity is also used)

Ung 2 Us strongly in L{ (R*) Vg € [1,6) uniformly in d, (2.23)
Un,§ = Un strongly in L{ (R?) Vg € [1,6) (uniformly in n), (2.24)
—
us — u strongly in LY (R?). (2.25)
6—0

Since div(ppu,) = 0, we then have, for any 6 > 0:

/Qpnun ® uy, : V(ow,)dx = /

Ups @ (ppun) : V(pw,)dz + R?"S
R3

= _/ div(Un.s @ pptty) - (pwy,) dz + R’
R3

- _/ (pnun . V)un,é : (¢wn) dz + R?é
R3

where
R?J - / (U — Up5) @ (poun) : V(ow,)dz.
RB

Since (pptn)nen is bounded in L?(Q)) for some p > g, (Vw, )nen is bounded in L#(Q)3 for any
6

s € (1,4+00), then the following inequality holds, for some triple (p,q,s), such that p > 2, s > 1,
g<6and L +1 411
p Ta s
n,0
|Ry°| < CHPn“n||Lp(Q)HV(¢wn)|

< Clluy — un,6||Lq(]R3)-

Ls(Q)3 lun — “n,5||Lq(R3)

As a consequence:

limsup |R°| < Climsup ||u,, — Ul 0 (s (2.26)
n—+oo n—-+oo

Thanks to the regularization of the velocity, we ensure that (Vu, s)nen is bounded in LY (R3)3.

The sequence ((pntn - V)tn s)nen = (Q,, 5)nen is then bounded in L" (), for some 7 > 1 and up to
the extraction of a subsequence, it weakly converges in L"({2) towards some function Qs € L"(f2).
We have

/ Prln @ uy, : V(dw,)de = —/ (pnn - Vs - (dw,) de + R?’é
Q Q

= —/ Qs - (pw)da + R’ + Ry (2.27)
Q

where

R?é == /Q Qn,é ' (¢wn) dz + /Q Q5 : (CbW) dx
= / (Q6 - Qn,é) - (pw) dz +/ ¢Qn75 . (w — 'wn) dex.
Q Q

Since (wp)nen converges strongly to w in L4(2), for all ¢ € (1,400), we have

IRY’| -0 asn — +oo for any fixed § > 0. (2.28)
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We now want to show that Q; = (pu - V)us. To that end, let us consider a fixed test function
v e W™ () and write (again thanks to the fact that div(p,u,) = 0)

/ (pnttn - V)Up 5 - vdx = —/ Un5 @ (ppuy) : Vodx
Q Q

- —/ us @ (pnuy) : Vode + }?3’6
Q
= / div(us ® ppuy,) - vde + R;L’é
Q
= / (pu - V)us - vde + RY°
Q

with
Ry = / (us — Ups) ® (pnuy) : Vode
Q

which tends to 0 (uniformly with respect to 0) as n — 400, since (ppUn)nen converges weakly to
pu in L (Q) for some ¢ > %, and (wy,5)nen converges strongly to us (uniformly with respect to
0) in L2 (Q) for any g2 < 6. As a consequence, we identify Q5 = (pu - V)us. Now, back to (2.27),
since at the limit div(pu) = 0, we have:

= /qua ®@u: V(pw)de + R?,é + R;L,(S
Q

where

RS = /Q (us —u) @ (pu) : V(pw) dex.

Combining (2.26) and (2.28), we get that for any fixed 6 > 0:

lim sup ‘ / Prtln @ Uy, : V(owy,) d:c—/ pu@u: V(pw) d:c‘ < Climsup |lu, — un_,5||Lq(R3)+\Rg|,
Q Q n—+00

n—-+4oo

for some ¢ < 6. By (2.25), we have R} — 0 as § — 0. Hence, by the uniform in n convergence of
(Un,5)s5>0 towards u, as & — 0 (2.24), letting ¢ tend to 0 yields:

lim Py @ Uy, 2 V(pw,)de = / pu @ u : V(opw)de.
Q

n—-+oo Q

We finally conclude that

lim (ap) — (2p + N)divu,) T (py) ¢ de = / (ap7 — (2p + N)divu) Ty (p) ¢ de.
Q

n—-+oo Q
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2.4.2 Strong convergence of the density

Let us begin this subsection with a brief sketch of the general strategy that we will employ. Concen-
tration phenomena being excluded, the only mechanism which can prevent the strong convergence
is the presence of oscillations. We need to prove that we control these oscillations. For large values
of 7, namely v > 2, one can show an “improved” version of the weak compactness of the effective
viscous flux (2.21) where Ty (p,,) (resp. Tx(p)) is replaced by p,, (resp p). Then, passing to the limit
n — 400 in the renormalized continuity equation

div((pp Inpp) up) = —ppdivau, in D'(R3)

we get

div(plnp u) = —pdive  in D'(R?).
On the other hand, applying the renormalization theory of Di Perna-Lions (Lemma 2.1) on the
limit p € L3O0~D(Q), w € H}(Q) we also have

div((plnp) u) = —pdivu. (2.29)
Subtracting this equation from the previous one, we arrive at
div((plnp — plnp) u) = pdivu — pdive  in D'(R?).
The weak compactness property of the effective viscous flux yields

(pp*7 - p’Y“) in D'(R?).

di Inp—pl u) =
iv((pInp —plnp) u) Y
Integrating in space, we end up with the identity pp? = p7t! a.e., from which the strong convergence
of the density follows by invoking the monotonicity of the pressure (Minty’s trick).

In the arguments presented above, one of the key point is to write (2.29) which requires from
the theory of Di Perna and Lions that p € L%(Q) (see Remark 2.4). The previous proof can be
adapted in the case v € (%, 2) using a “weaker” version of the effective viscous flux identity where
pn is essentially replaced by p& for some « € (0,1). This is the case initially demonstrated by Lions
in [33]. For smaller values of 7, i.e. 3 <y < 2, we do not ensure a priori (2.29) since p does not
belong to L2(2). The idea of Feireis] [14] (adapted then by Novo and Novotny in the stationary
case) is to work on the truncated variable T (p), defined in (2.20) which is bounded for fixed & (and
thus in L?(Q)). With similar arguments as before, one may then show the strong convergence of
(T (pn))nen to Ti(p) (uniformly with respect to n in LY+1(Q)). Combining finally this result with
the strong convergence of the truncated variables as k — +o0o (see Lemma 2.10 below), we will get
the strong convergence of (p,)nen-

Properties of the truncation operators 7.

Lemma 2.10. Under the assumptions of Proposition 2.9, there exists a constant C such that the
following inequality holds for all 1 < ¢ < 3(y—1), n € N and k € N*:

11
[Tk (p) — pHLq(Q) + 1Tk (p) — PHLq(Q) + 1Tk (pn) — PnHLq(Q) < Ck36-07a, (2.30)

Consequently, as k — +oo, the sequences (Tx(p))ken+ and (Ti(p))ren+ both converge strongly to p
in L1(Q) for all g € [1,3(y —1)).
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Proof. As a consequence of the inequality
1 P
{pn > k}| < %/ pnda = |02 <
Q
we deduce by Holder’s inequality that for any ¢ < 3(y — 1)
1Tk(0n) = pallacay = ITL(pn) = p) Lo 20 e
< ||p”1{ﬁn2k}HLq(Q)
< Ck30=0 4| pp| 1 3¢:-1) ()
<Ok,

where the constant C' only depends on ¢ and the uniform bounds on the sequences (p})nen and
(lpnll3¢v-1) Jnen- Doing the same with the limit density p, we get

1 1
[T (p) = PllLa(q) < CRZG-D 5.

Finally, we have:

_ < limi _
1Te(p) = Pliagy < limnf |Ti(pn) = pullae)
< limsup || Tk (pn) — pn”Lq(Q)
n—-4o0o

< Ck3-D"a,
which ends the proof. O

Lemma 2.11. Under the assumptions of Proposition 2.9, there exists a constant C such that the
following estimate holds:

sup limsup | T (pn) — Ti(p) 21 (g < C- (2.31)
k>1 mn—+oo

Proof. First of all, observe that for all 1,75 > 0,

Tk (r1) = Ti(r2) " < (] = r))(Th(r1) — Ti(r2))

and thus

timsup [ [Tilpu) = Tlp) 7 < Bimsup [ (57 = p7)(Tu(o) = (o)

n—-+o0o n—-+4oo

S/Q(mTk(p)—ﬁTk(p))Jr/ (07 = ") (Ti(p) — Ti(p))-

Q

Invoking the convexity of the functions ¢t — ¢ and t — —T(t), we have p¥ > p¥ and Tx(p) < Tk(p)
so that

tiwsup [ [Z(pn) = Tp) ™ < | (GTTG) - 77 Tilp).
Q Q

n—-4oo
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We can now use the weak compactness property satisfied by the effective viscous flux (2.21):

limsup/ Tk (pn) — Ti(p)"t
Q

n—-+oo
2u+ A —
< pt lim sup/ (T (pn) — Ti(p))div u, (2.32)
a n—+4o0o JQ
2u+ A 2u+ A —
< pt lim sup/ (T (pn) — Ti(p))div u, + Rt lim sup/ (Ti(p) — Tr(p))div u,
a n—+4o0o JQ a n—+oo JQ

< Climsup | T (pn) = Tr(p) |12 (0)-
n——+o00

Where C' depends on the uniform bound on the sequence ([|div y ||y (q))nen. Since v +1 > 2, we
obtain thanks to Holder and Young inequalities

. 1.
timsup [ [Ze(pn) = Th(p) " < €+ 3 limsup [Tion) = Tulp) 1 o
n—4+oo JQO n—-+4oo

which achieves the proof. O

Renormalization equation associated with 7. For any k € N*, define

Li(t) =

{t(lnt—lnk—l), if ¢ € [0, ), (2.33)

—k, if t € [k, +00),
which belongs to C°([0, +00)) N C!((0,+o0)) and which is such that

tLy.(t) — Li(t) = Te(t) Vt € [0, +00).

Remark 2.6. Note that function Ly can be seen as a truncated version of the function L(t) = tInt
used in (2.29) for large 7, up to the addition of the linear function t — —(Ink + 1)t.

Proposition 2.12. Let Q be a Lipschitz bounded domain of R3. Assume that v € (2,3]. Let
(P> Un)nen be the sequence defined in Theorem 2.2 and let (p,u) € L3O =(Q) x H}(Q) be its limit

defined in Proposition 2.6. Then, for all k € N*, the following equations hold:

div(Ly (pp)wn) + Ti(pp)divau, =0, in D'(R®), ¥n €N. (2.34)
div(Li(p)u) + Tx(p)divu = 0 in D' (R?). (2.35)

Proof. Since Ly € C°([0,+00)) N CY((0,+00)) satisfies (2.5), and since (p,,,u,) is a renormalized
solution of (1.1)-(1.2)-(1.3), in the sense of Definition 2.1, equation (2.34) holds true.

Let us prove that a similar equation is also satisfied for the limit couple (p,u). Using the
renormalization property (2.7) satisfied by (pn,u,) for the truncated function Thr, M € N* we
obtain:

div(Tar(pn)tn) = = [pu[Tar) (pn) — Tar(pn)]diva, —in D'(R?).

19



which yields as n — 400

div(TM(p)u) =— [p[TM];(p) — TM(p)}divu in D' (R?). (2.36)
For £ € N* and 6 > 0, we introduce the regularized function Ly ; defined as
Lis(t) = Li(t + 9), (2.37)

the derivative of which is bounded close to 0 unlike L. Applying Lemma 2.1 (and the second
part of Remark 2.4) to the pair (Tas(p), w) (justified since Tar(p) € L>°(Q2) for M fixed) with the

function Ly s and the source term g = — [p[Tr)' (p) — T (p)]divu € LL (R3), we get:

diV(Lk75 (TM(p)) ) + T 5(TM( ))dlvu
= —Lj, s (Tar (p)) [p[Tna)'s (p) = Ta(p)]div  in D'(R?)  (2.38)

where

Ts5(t) = tLy, 5(t) — L s(t).
We now have to pass to the limits M — +o0, § — 07. Lemma 2.10 yields the strong convergence
of Thr(p) to p as M — +o0. As a consequence, the left-hand side of (2.38) converges in D’(R?) to

div (Lk,(;(p)u) + Tkﬁ (p)div u.

Regarding the right-hand side

—Ly, 5(Tor(p) [p[Tad]'s () — Tar (p)] div u,

since Lj, 5(t) = 0 for t > k, we estimate its L' norm as follows

| Fos O T G~ Tor (v o

< max |Lj, 5(t) \/‘ [T (p) — Tar(p )]dlvu‘lngdw
t€[0,k]

where Q=1 We then have

{Tnm (p)<k}"

e (L] [ |l ()~ Tur(p]diva 1a,,, do
te0,k] Q

< max | L, (1)] ggmg/ | [onlTor) (pn) = Tas (pn) ] div un| 1q,, , d

< tfen[gi] |Lk s limSUP/ |[Pn[TM]/+(Pn) - TM(pn)}div un] 1a,,, dz

<€ o [Lis(0)] Bmsup [Zar () sy 2201 (2.39)

te(o, n—-+oo

since the sequence (||div un”L?(Q))nEN is bounded. We already know that Tas(pn)1la,, .n{p,>M} 1S
controlled in L'(Q) since

||TM(Pn)1QM,m{pn2M}||L1(Q) < Hpnl{PnZ]‘“HLl(Q)
1
< CM36-0 aln”LSH*l)(Q)
< COM3G-TD!,
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where the constant C' only depends on the uniform bounds on (p})nen and (||pn || 3¢v-1) )nen. There-
fore, by an interpolation inequality, we obtain:

lim sup ||TM(p7l)XQM sN{pn>M} HL2(Q)

n—-4oo
y—1 A+l
< Climsup [T (pn) Xoras uip. 21y HLI(Q) T8 (Pn)Xeps i pn=ny 11740 0
¥ ( 1 ) L
=11 1) .. 2~
< e (o) b ((Tas () = T5000) Vo s ) + 1T 00X 1)
o+l
L—l(éfl) . 2y
< o5 5w timsup (11T (pn) = Tar(0)) gy + K197
n—+4o0o
Thanks to Lemma 2.11, we deduce that
lim sup || Tn (pn ) Xa,, m{pn>M}||L2 C(k,Q)M%I(S’(Vl*l)_l) —0 as M — +oo.
n—-+oo
Injecting in (2.39), we get
tren[g)é]\Lké |/‘ (T (p) — Tar(p )dlvu‘XQMkdw -0 as M — +o0.

Note that to get this result, we have been forced to regularize the function Ly (see (2.37)) in order
to control its derivative close to 0. Hence, passing to the limit M — 400 in (2.38) we get

div(Ly,s(p)u) + T s(p)dive =0, in D'(R?), VkeN* 5> 0.
Now, observe that for all ¢ € [0, +00)
Lis(t) —o Li(t),
Tr,s5(t) = tLy, 5(t) — Ly,s(t) v tL(t) — Li(t) = Ti(t).
Moreover, since for all ¢ € [0,4+00) and § € (0, 1), we have |Ly 5(t)| < k and
T, (t)| = |Ti(t +0) — 0L}, (t + 0)]
< b+ 8[Int +8) — In kX p5ciy < K+ 6(|n 6]+ % 10 k) Xppaery < CO),
we can pass to the limit § — 0" thanks to the Lebesgue Dominated Convergence Theorem to get
div(Li(p)u) + Ti(p)dive =0, in D'(R?),

for all k € N* which concludes the proof. O
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Strong convergence of the density

Proposition 2.13. Let Q be a Lipschitz bounded domain of R®. Assume that v € (%,3]. Let
(P> Un)nen be the sequence defined in Theorem 2.2 and let (p,u) € L3O =1(Q) x HY(Q) be its limit

defined in Proposition 2.6. Up to extraction, the sequence (pp)nen strongly converges towards p in
L9(Q) for all g € [1,3(y — 1)).

Proof. Integrating the renormalized continuity equations (2.34) and (2.35) and summing, one ob-
tains:

/ Ti(pp)div u, de — / T (p)divude = 0, Vn € N.
Q Q

We then use this identity in inequality (2.32) to deduce that

1imsup/ Ty(pn) — T(p)" T dz
Q

n—-+o0o

2 A
< At 1imsup/ (Tk(pn) Tk(p ))dlvunda:
¢ n—+oo JQ
2 A —
_ht /(Tk(p)ka(p))divuda:quimsup(/Tk(pn)divundmf/Tk(p)divudw)
a Q n——+o00 Q Q
21+ A —_— ..
=52 [ (1) - Tilp) divude.
a Q
Using Lemma 2.10 we infer that
[ (00 =T div ude) < vl oy (o) = Tl
-1 241
< CITi(p) — Tilp) I (e 1 T () — T (o) s o
< C(IT(p) = llus oy + o) = pllacey) " 1Tk(0) = TelP)ll s o

EESY

< ok (w5 | T(0) - Te(D) 2

1

=11 . v
< C]gﬁ(sm—n 1) (hmsup T (pn) — Tk(p)||m+1(m) o

n—-+oo
As a consequence of Lemma 2.11, we have

tim_timsup [ [Ti(p0) = (o) do =0

k—+400 n—s4o0o

and thus
lim limsup || Tk (pn) — Tk(P)”Ll(Q) =0. (2.40)

k—+00 n—4o0

We conclude to the strong convergence of the density by writing

10 = prlli) < lon = Telpn) i) + 1 Tk(0n) — TPl ) + 1T6(p) = pllLi ()

Passing to the limit superior n — 400 in this inequality, using again Lemma 2.10 and the previous
estimate (2.40) to then pass to the limit ¥ — 400 yields the strong convergence of the density in
LY(Q) and therefore in L4(Q) for all ¢ € [1,3(y — 1)). O
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2.5 Elements for the construction of weak solutions

The previous subsections were concerned with the stability of weak solutions of Problem (1.1)-(1.2)-
(1.3). An important step is the effective construction of such weak solutions by means of successive
approximations. This construction is sketched by Lions in [33] for the case v > % and detailed by
Novo and Novotny in [34] for the case v > % The approximation procedure is usually decomposed
into three steps:

e addition in the momentum equation of an artificial pressure term §Vp' with I' sufficiently
large, namely I" > 3;

e addition of a relazation term «a(p — p*) in the mass equation in order to ensure that the total
mass constraint (1.3) is satisfied at the approximate level;

e addition of a diffusion or regularization term (e.g. —eAp) in the mass equation which regu-
larizes the density.

As a consequence of the modification of the mass equation, the momentum equation can also
involve additional perturbation terms depending on « and ¢, in order to ensure the preservation of
the energy inequality (see details in [34] or [35]). The parameters d, o, € being fixed, the existence
of weak solutions is obtained by a fixed point argument. Then, the proof consists in passing to the
limit successively with respect to €, a and then finally with respect to 4.

In the next section, we present our numerical scheme which essentially reproduces at the discrete
level the previous three approximation terms. Nevertheless, the parameters €, a, § are no more
independent in the discrete case, they shall all depend on the mesh size and converge to 0 as the
mesh size tends to 0. In that sense, the convergence result that we obtain in the next sections can be
seen as an alternative proof of existence of weak solutions to the stationary problem (1.1)-(1.2)-(1.3).

3 The discrete setting, presentation of the numerical scheme

3.1 Meshes and discretization spaces

Let Q be an open bounded connected subset of R?, d = 2 or 3. We assume that Q is polygonal if
d = 2 and polyhedral if d = 3.

Definition 3.1 (Staggered mesh). A staggered discretization of ), denoted by D, is given by a pair
D = (M,E), where:

e M, the so-called primal mesh, is a finite family composed of non empty simplices. The primal
mesh M is assumed to form a partition of Q : Q = Ugepm K. For any open simplex K € M,
let 0K = K \ K be the boundary of K, which is the union of cell faces. We denote by & the
set of faces of the mesh, and we suppose that two neighboring cells share a whole face: for all
o € &, either o C 0N or there exists (K, L) € M? with K # L such that KNL = o; we denote
in the latter case 0 = K|L. We denote by Eexy and Einy the set of external and internal faces:
Eext = {0 €&,0 CON} and Eint = E\ Eext. For K € M, E(K) stands for the set of faces
of K. The unit vector normal to o € E(K) outward K is denoted by n . In the following,
the notation |K| or |o| stands indifferently for the d-dimensional or the (d — 1)-dimensional
measure of the subset K of R? or o of R4™! respectively.
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Figure 1: Notations for primal and dual cells. Primal cells are delimited with bold lines, dual cells
are in grey.

o We define a dual mesh associated with the faces o € £ as follows. For K € M and o € £(K),
we define Dk » as the cone with basis o and with vertex the mass center of K (see Figure 1).
We thus obtain a partition of K in m sub-volumes, where m = d + 1 is the number of faces
of K, each sub-volume having the same measure |Dg | = |K|/(d+ 1). The volume Dy , is
referred to as the half-diamond cell associated with K and o. For o € &y, 0 = K|L, we now
define the diamond cell D, associated with o by Dy = Dk o UDy, o. For o € ey NE(K), we
define D, = Dy 5. We denote by E(Dy) the set of faces of Dy, and by € = Dy| Dy the face
separating two diamond cells D, and D,/. As for the primal mesh, we denote by Emns the set
of dual faces included in the domain Q and by ey the set of dual faces lying on the boundary
00. In this latter case, there exists 0 € Eoxt such that € = o.

Definition 3.2 (Size of the discretization). Let D = (M, &) be a staggered discretization of 2. For
every K € M, we denote hx the diameter of K (i.e. the 1D measure of the largest line segment
included in K ). The size of the discretization is defined by:

hyp = max hg.
M KeM

Definition 3.3 (Regularity of the discretization). Let D = (M, &) be a staggered discretization
of Q. For every K € M, denote ok the radius of the largest ball included in K. The reqularity
parameter of the discretization is defined by:

hxg hr

GM:max{Z—i,KGM}U{E, E,U:K|Le<€im}. (3.1)

A sequence (Dy)nen of staggered discretizations is said to be regular if:
(1) there exists 6y > 0 such that Opq, < 0y for alln € N,

(73) the sequence of space steps (ha, Jnen tends to zero as n tends to +o0o.
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Relying on Definition 3.1, we now define a staggered space discretization. The degrees of freedom
for the density (i.e. the discrete density unknowns) are associated with the cells of the mesh M:

{pK7 K e M}

The discrete density unknowns are associated with piecewise constant functions on the cells of the
primal mesh.

Definition 3.4. Let D = (M, E) be a staggered discretization of Q. We denote Ly (Q2) the space
of scalar functions that are constant on each primal cell K € M. For p € Ly () and K € M, we
denote pr the constant value of p on K. We denote L o(S2) the subspace of Lag(2) composed of
zero average functions over 2.

The degrees of freedom for the velocity are associated with the faces of the mesh M or equiva-
lently with the cells of the dual mesh D, 0 € £ so the set of discrete velocity unknowns reads:

{us €R? o€ &}

The discrete velocity unknowns are associated with the Crouzeiz-Raviart finite element. For all
K € M, the restriction of the discrete velocity belongs to P; (K') the space of polynomials of degree
less than one defined on K.

The space of discrete velocities is given in the following definition.

Definition 3.5. Let D = (M, &) be a staggered discretization of ) as defined in Definition 3.1.
We denote Haq(Q2) the space of functions u such that wjx € P1(K) for all K € M and such that:

;/[u]a do(z) =0, Yo € Em, (32)

where [u]g is the jump of u through o which is defined on 0 = K|L by [ulo = ujp, —ux. We
define Haq,0(2) C Haq(Q) the subspace of Ha(Q) composed of functions the degrees of freedom of
which are zero over 082, i.e. the functions u € Ha(Q) such that ﬁ J,udo(x) =0 for all 0 € Eexs.

Finally, we denote Hpa(Q) :== Ha(Q)¢ and Hpyg0(2) := Hpag0(Q)%
For a discrete velocity field u € Hx () and o € £, the degree of freedom associated with o is
given by:

1
Uy = |U/guda(w). (3.3)

Although u € Hpp(Q) is discontinuous across an internal face o € &y, the definition of wu, is
unambiguous thanks to (3.2).

3.2 The numerical scheme

Let Q be a polyhedral domain of R?. Let D = (M, &) be a staggered discretization of {2 as defined
in Definition 3.1. The continuity equation is discretized on the primal mesh, while the momentum
balance is discretized on the dual mesh. The scheme reads as follows:
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Solve for p € Lap(Q) and uw € Hpqo(Q):

divg(pu) + hS (p— p*) — Sy Asen p(p) =0, (3.4a)
dive(pu @ u) — pAgu — (u+ A)(Vodiv)eu+aVe(p?) + hff;t Ve(ph) =Ie f, (3.4b)
where n = 27,;3

The discrete space differential operators involved in (3.4a) and (3.4b), as well as their main
properties, are described in the following lines. The positive constants I' and (£1,&2,&3) will be

determined so as to ensure the convergence of the numerical solution towards a weak solution of
(1.1)-(1.2)-(1.3).

Mass convection operator — Given discrete density and velocity fields p € Ly (2) and u €
H (), the discretization of the mass convection term is given by:

dvalpn)(@) = Y m( X Frolow) Xule) (35)

KeM cEE(K)

where X is the characteristic function of the subset K of Q. The quantity F ,(p,u) stands for
the mass flux across o outward K. By the impermeability boundary conditions, it vanishes on
external faces and is given on internal faces by:

Fro(p,u) = o] poto - Nk o, Vo € Eng, 0 = K|L. (3.6)

The density at the face 0 = K|L is approximated by the upwind technique, i.e.

if u,-mn >0
pr = {”K T oRr=T (3.7)
pr  otherwise.
Stabilization terms in the mass equation — The discrete mass equation involves two sta-

bilization terms. The first stabilization term is there to ensure the total mass constraint at the
discrete level (1.3):

Sy (o) — p*) = B3y D (px — p*) Xk ().
KeM

The second stabilization term in the discrete mass equation (3.4a) is defined as follows:

1

1 a n 1_
D)@ =Y (X 1ol (1) ok~ pnl5 (o — o)) Al (39)
! e 1K1 G €E(K)NEint Do |
o=K|L

1+

Its aim is to provide a control on a discrete analogue of the WlTn(Q) semi-norm of p by some
(negative) power of the discretization parameter has. This control appears to be necessary in the
convergence analysis, when passing to the limit in the equation of state, see Remark 5.1.
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Velocity convection operator — Given discrete density and velocity fields p € L (92) and
u € Hp,0(Q), the discretization of the mass convection term is given by:

dive(pu @ u)(z) = 3 ﬁ( S Foclpu) ue) X, () (3.9)

o€t ec€(Dy)

F, (p,u) is the mass flux across the edge € of the dual cell D,. Its value is zero if € € Eoxt-
Otherwise, it is defined as a linear combination, with constant coefficients, of the primal mass
fluxes at the neighboring faces. For K € M and o € £(K), let £% be given by:

50:|DK70|: 1
K7 K] d+1’

(3.10)

so that ) £(K) &% = 1. Then the mass fluxes through the inner dual faces are calculated from

the primal mass fluxes Fi ,(p, u) as follows. We first incorporate the second stabilization term (see
(3.8)) into the primal mass fluxes by defining F i ,(p,u) as follows:

o]

% 1_1q
|D ‘) |pK 7PL|” (pK *pL), Yo € ginta O':K|L

Fropu) = Ficopw) + 15 Jo]

(3.11)

The dual mass fluxes F, .(p,u) are then computed to as to satisfy the following three conditions:

(H1) The discrete mass balance over the half-diamond cells is satisfied, in the following sense. For
all primal cell K in M, the set (F, (p, u))eck of dual fluxes included in K solves the following
linear system

FK,U(pa u) + Z Fa,e(p7 u) = 6([7{ Z FK,U’ (P7 u), (S E(K) (3.12)
e€€(D,), eCK o' €E(K)

(H2) The dual fluxes are conservative, i.e.

Fy,e(p,u) = —Fp (p,u), Ve = Dy| Dy (3.13)

H3) The dual fluxes are bounded with respect to the primal fluxes (F ,(p, %)),ce(x), in the sense
, (K)
that
[Foe(pou)| < max {|[Fro(p,u)|, o' € E(K)}, (3.14)

for K e M, 0 € £(K), e € £(D,) with e C K.

The system of equations (3.12)-(3.13) does not depend on the particular cell K since it only depends
on the coefficient €% = 1/(d + 1). It has an infinite number of solutions, which makes necessary
to impose in addition the constraint (3.14); however, assumptions (H1)-(H2)-(H3) are sufficient for
the subsequent developments, in the sense that any choice for the expression of the dual fluxes
satisfying these assumptions yields stable and consistent schemes (see [31, 32]).
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This convection operator is built so that a discrete mass conservation equation similar to (3.4a)
is also satisfied on the cells of the dual mesh. Indeed, let (p,u) € La(©2) x Ha(R2) and define a
constant density on the dual cells pp, as follows:

[Dolpp, = |Dk.olpr + |Drglpr  for o = K|L.
Then if (p,u) satisfy (3.4a), one has:
> Foclp,u) +hSy| Dol (pp, — p*) =0, Vo € &, (3.15)
ec€(Dy)
which is an analogue of (3.4a) where the stabilization diffusion term is hidden in the dual fluxes.

To complete the definition of the momentum convective term, we must give the expression of
the velocity u. at the dual face. As already said, a dual face lying on the boundary is also a primal
face, and the flux across that face is zero. Therefore, the values u. are only needed at the internal
dual faces; we choose them to be centered:

1
ugzi(ug—i—ugz), for e = D, |D..

Diffusion operator — Let us define the shape functions associated with the Crouzeix-Raviart
finite element. These are the functions ({,),eg where for all o € &, (, is the element of H ()

which satisfies: ) f o
1, ifo' =o,
M/J/nga(w)—{Q if o/ £ 0.

Given a discrete velocity field w € Hpq,0(€2), the discretization of the diffusion terms is given by:

—Agu(z) = Z ﬁ( Z /KVu.VCUdac) Xp, (x),

0€Eint KeM
(3.16)

—(Vodiv)su(z) = Z \D10| ( Z /Kdiv uV{, dm) Xp, ().

o€E&nt KeM

Pressure gradient operator — Given a discrete density field p € La(Q2), the pressure gradient
term is discretized as follows:

Vel @) = Y (10 (5}~ k) mace) Ao (@), (3.17)
o€Eint
o=K|L

The discrete momentum equation (3.4b) also involves a third stabilization term, an artificial pressure
term, which reads:

o

W Ve @) =S 30 (5 (k= plo) maco ) Ao, (@),
Uegint 7
o=K|L

where I' > ~ is chosen large enough to ensure a control on the discrete weak formulation of the
convective term in the momentum equation when v € (%, 3]. Note that, if d =3 and v > 3 or d = 2
and v > 2, this term is not needed.
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Source term — The source term f € L?((Q) is discretized with the following projection operator:

fef@)= Y (“;U'/D fda) X, (). (3.18)

o€&int

3.3 Main result: convergence of the scheme

For the clarity of the presentation, we state our convergence result in the same setting as for the
continuous problem, namely for d = 3 and v € (%, 3]. We refer to the remark below for the “simpler”
cases d = 2, and d = 3 with v > 3.

Theorem 3.1 (Convergence of the scheme). Let Q be a polyhedral connected open subset of R3.
Let f € L?(Q) and p* > 0. Assume that v € (2,3]. Denoting n = # € (0,1], assume that T and

(€1,62,&3) satisfy:

(@ &>l (3.19)
. ) 3 7
(i1) T <1+n + 53) < Thn (3.20)
1 ) 3 14+n ) 3

Let (Dy,)nen be a reqular sequence of staggered discretizations of Q@ as defined in Definition 3.3. Then
there exists N € N such that for alln > N, there exists a solution (pn,ur) € L, () x Hag,, 0(2)
to the numerical scheme (3.4) with the discretization D,, and the obtained density p, is positive on
Q. Moreover, there exist (p,u) € L3O~ (Q) x H}(Q) and a subsequence of (pn,Un)n>nN, denoted
(Pn, U )nen such that:

o The sequence (Un)nen converges to w in L1(Q) for all g € [1,6),

o The sequence (pyn)nen converges to p in LI(Q) for all g € [1,3(y—1)) and weakly in L0~ (Q),

. 3(r=1)
The sequence (p) )nen converges to p? in L1(Q) for allq € [1, @) and weakly in L2 (Q),

The pair (p,u) is a weak solution of Problem (1.1)-(1.2)-(1.3) with finite energy.

Remark 3.1 (Some remarks on Theorem 3.1).

o Let us mention that the convergence result of Theorem 3.1 can be extended to the cases d = 3,
v >3 and d =2, v > 2 with the mass stabilization term defined as

1 o
Ao =1 Y (S el ox - o)) (e,
KeM 0 €E(K)NEint 7
oc=K|L
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and without the artificial pressure term. The required constraints on (§1,&2) are the following:

£1>1Zfd:3 and €1>Olfd:2,

3
— 2.
2<§2<

In the case d = 2, 1 < v < 2, we expect a convergence result with the stabilization term
proposed in [13] combined with an artificial pressure term.

e The upper bound on & is required when passing to the limit in the effective viscous flux at
the discrete level (see Subsection 5.3.1 and (5.28)). The lower bound on & is required for the
control on the momentum convective term when deriving the discrete estimate on the density
(see (4.21)), which explains why this constraint was not introduced in [13] for the Stokes
equations.

The following sections are devoted to the proof of Theorem 3.1. In Section 4.1, we introduce
some notations and properties of the discretization. In Sections 4.2 to 4.5, we derive a priori
estimates on the solution of the scheme and prove its existence provided a small enough space step
haq. Finally, in Section 5, we prove Theorem 3.1 by successively passing to the limit in the discrete
mass and momentum equations, and then in the equation of state.

4 Mesh independent estimates and existence of a discrete
solution

4.1 Discrete norms and properties

We gather in this section some preliminary mathematical results which are useful for the analysis
of the scheme. Similar results have been previously used by Gallouét et al. in their study [20] which
also relies on a mixed FV-FE discretization. The interested reader is also referred to the books [9],
[11], [8] and to the appendix of [23].

We start with defining the piecewise smooth first order derivative operators associated with the
Crouzeix-Raviart non-conforming finite element representation of velocities u € H((Q) :

Vmu(x) = Z Vu(x)Xk(x), (4.1)
KeM
divpu(@) = Y divu(z)Xg(z), (4.2)
KeM
curlppu(x) = Z curl u(x) X (). (4.3)
KeM

Note that on each element K € M, Vu i € R? is actually a constant and the divergence defined
in (4.2) matches the finite volume divergence defined in (3.5) for p = 1.

We then define for g € [1,00) the broken Sobolev W14 semi-norm [[-[I1.4.4 associated with the
Crouzeix-Raviart finite element representation of the discrete velocities. For any u € H () it is
given by:

lull? , op = /Q IV sl d.
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A first important property, proved in Appendix C, is the following discrete Sobolev embedding.

Lemma 4.1 (Discrete Sobolev embedding). Let D = (M, &) be a staggered discretization of §)
such that Opg < Oy (where Oxq is defined by (3.1)) for some positive constant 6y. Then, for all
q €[1,400) if d =2 and for all ¢ € [1,6] if d = 3, there exists C = C(q,d,0p) > 0 such that:

[ullpaia) < Cllullgm  Va € Hato(Q)-

Remark 4.1. For d=2, one has C(q,d,0y) — oo as ¢ — 0.

A consequence of this Sobolev embedding is a discrete Poincaré inequality. Note that the semi-
norm [lul[; , o is in fact a norm on the space Hq,0(€2).

Lemma 4.2 (Discrete Poincaré inequality). Let D = (M, &) be a staggered discretization of €
such that O < 0y (where O is defined by (3.1)) for some positive constant 6y. Then there exists
C = C(d,00) such that

lullLz @) < Cllully g ag Vo € Hago().

It will be convenient in the analysis of the scheme to handle several representations of the
discrete velocities. We define an interpolation operator IIg¢ which associates a piecewise constant
function over the cells of the dual mesh to any function w € Hx( () as follows:

Mew(z) = Y uo Xp (). (4.4)

0E€Eint

The constant value of IIgu over the cell D, is u, defined in (3.3). The mapping u — Igu is a
one-to-one mapping which is continuous with respect to the LZ-norm, for all ¢ € [1,400]. Indeed,
we have the following result.

Lemma 4.3. Let D = (M, &) be a staggered discretization of Q such that Opg < 0y (where Opq is
defined by (3.1)) for some positive constant 6. Then, for all g € [1,400], there exists a constant
C =C(q,d,0y) such that:

||H€uHLq(Q) <C ||u||Lq(Q)'

Proof. This property is obtained through standard properties of the affine mapping and invoking
a norm equivalence argument for the finite dimensional polynomial space on the reference unit
simplex P;(K). O

We also define a finite-volume type gradient for the velocities associated with the dual mesh.
This gradient is somehow a vector version of the gradient V¢ defined in (3.17) for scalar function
in Ly(Q). For u € Hy(R2) and K € M, denote ug = ZUES(K) &% u, where &% is defined in
(3.10). The finite-volume gradient of w is defined by:

Veu@) = (U;" (e — ) & nK,U)xDU(m). (4.5)
gE€Eint 7
o=K|L

31



We also introduce the following other discrete W4 semi-norm given for u € Hp(Q) by:

d—
||uH(11,q,5 = Z he Z [ug — |9

KeM o,0'€E(K)

This semi-norm may be shown to be equivalent, over a regular sequence of discretizations, to the
usual finite volume W'¢ semi-norm associated with the piecewise constant function ITgw. It is
possible to prove that this semi-norm, as well as the semi-norm defined by the L? norm of V¢u are
controlled on a regular discretization by the finite-element W4 semi-norm. Indeed, we have the
following lemma.

Lemma 4.4. Let D = (M, &) be a staggered discretization of Q such that Opg < 6y (where Opq is

defined by (3.1)) for some positive constant 0y. Then for all g € [1,400) there exist two constants
Cy = C1(q,d, 0p) and Cy = Cs(q,d, 0y) such that:

IVeullpaye < Crllully g6 < Callulligae Y € Hat(S).

Proof. The first inequality follows from the regularity of the discretization and from the fact that
for K € M, uk is a convex combination of (us)eg(x). The second inequality is obtained through
standard properties of the affine mapping and invoking a norm equivalence argument for the finite

dimensional polynomial space on the reference unit simplex P (K). O

Lemma 4.5 (Inverse inequalities). Let D = (M, &) be a staggered discretization of € such that
Op < Oy (where Opq is defined by (3.1)) for some positive constant 0y. Let u be a function defined
on § such that for all K € M, u i belongs to a finite dimensional space of functions which is stable
by affine transformation. Then, for all q,p € [1, +00], there exists C = C(q,p, 00, d) such that (with
1/o00=10):

1-3)

d
[ulogey < CRRT P fulpgey, VK € M. (46)
Hence, for all p € [1,400), there exists C = C(p, o) such that :

_4d
lull ey < Chxd Nl ey (4.7)

Proof. Inequality (4.7) is a direct consequence of (4.6). Let us prove the latter. Let K be the
reference element. We have K = Ag(K) for some affine mapping Ax. We denote @ the function
defined by @(&) = u(x) for € = Ax(&). By this change of variable we have:

LA . . LW
K| ullpacry < Nl pacgys lllLo ) < K| [l Lo (-

Since ﬁ‘ & belongs to a finite dimensional space, the equivalence of all norms gives Hﬁ”Lq( Q) <
CH&HLP(K) with C = C(¢,p,d). We conclude by invoking the regularity of the discretization:
C(fy)~ 1t hj‘,l{ <|K| < C(Oo)hf{.

O
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For ¢ € [1,+00), we introduce a discrete semi-norm on L4 (2) similar to the usual W4 semi-
norm used in the finite volume context:

lo] N4
08 = Ve Ty = D |Da|<‘D |> ok — Y.
o gint g
O':EK\L

It will be convenient in the analysis of the scheme to handle another representation of the
discrete densities associated with the upwind discretization of the mass flux. For u € Hp () we
define an interpolation operator Pg which associates a piecewise constant function over the cells of
the dual mesh to any function p € L (€2) as follows:

Pep(x) = D poXp, (). (4.8)

o€Eint

The constant value of Pgp over the cell D,, 0 = K|L € &y is p, the upwind value with respect to
Uy, 1.6. Pg = PK 1S Uy - MK, > 0 and p, = pr, otherwise.

Lemma 4.6. Let D = (M, &) be a staggered discretization of Q such that Opg < 0y (where O
is defined by (3.1)) for some positive constant 0. For all ¢ € [1,400], there exists a constant
C = C(q,8) such that:

1PepllLaqy < CllollLaqy,  Vp € La().

Proof. The proof is trivial for ¢ = +00. Let ¢ € [1,+00), in that case we have:

“P5p||EQ(§z) = Z |Dol|po|?.
0€E&int

For o = K|L, either p, = px or ps = pr. Hence, |Dy| |ps|? < |Do||pr|?+|Ds| |pr|?. Thanks to the
regularity of the mesh, there exists C(6y) such that |Dy||ps|? < C(00)(|Dk.o| |px|?+ |DrL,o| lpL]?).
Summing the right hand side of this inequality over o € &y yields C(6y) ||p|\iq(Q). O

In the following subsections, the discrete density is first shown to be positive and we prove a
discrete analogue of the renormalization property satisfied by the solutions of the discrete mass
equation (3.4a). Then, we establish stability properties enjoyed by any solution of the numerical
scheme which are discrete analogues of the uniform (with respect to n) estimates of Section 2 for
the solutions of the continuous problem. In particular, we prove a discrete Hj-estimate on the
velocity and a the control of the density in L3V=1)(Q) which are both independent of the mesh size
hat. In order to perform the convergence analysis of the scheme, we also prove stronger controls on
the density (an L'-control with I" large and a control on the discrete gradient) which nevertheless
blow up as the mesh size h tends to zero. From this point on, we assume d = 3.

4.2 Positivity of the density and discrete renormalization property

We prove the positivity of the discrete density p € L () if (p, u) is a solution of the discrete mass
balance (3.4a). We have the following result:
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Proposition 4.7 (Positivity of the density). Let D = (M, &) be a staggered discretization of Q.
Let (p,u) € Ly () x Hag(Q) be a solution of the discrete mass balance (3.4a). For K € M, denote
div(u) g the constant value of divasu over K. Then

*

P

1+ hj\fl max (0, max div(u)K)
€

PK > pi= >0 VK eM.

Proof. We proceed by contradiction. Let K € M be such that pgz = [I(nljl\l/[ px and assume that
€
pr < p. Multiplying (3.4a) by Xz we get:

. 1
W (g — p*) + pig div(u) g + i > ol (pe — pr) U Tk,

ce&(K)
Phg S ol (el 5 (g - pu) =0
MK Sy P
o=K|L

For L a neighboring cell to K, one has p; > pg by definition of K, which implies that the last
term is non-positive. In addition, because of the upwind definition of p, (see (3.7)), the third term
is also non-positive. Hence, we get:

W5y (p — p°) + p div(u) g > 0. (4.9)
By definition of p, we have:

S, (P — p*) + pmax (0, max div(u)K) —0. (4.10)
Subtracting (4.10) from (4.9) we obtain:

hﬁ\l/[ (pe —p) + (pf{div(u)f(fﬁma (O7 max div(u )) >0
If div(u) z < 0 then the second term is clearly non-positive. If div(u)z > 0, then we have
pi div(u) g — pmax (O, max div(u)K) = prdiv(u)g — ﬁlr(nea/a div(u) g
< ﬁ(div(u)[g — max div(u)K>

which is also non-positive. In both cases we obtain that hf\l,t (pr — ) > 0 which contradicts the

assumption pgz < p.
O

Next, we state the following result which is a discrete analogue of the renormalization property
(2.6) satisfied at the continuous level. The proof is given in Appendix A.1.
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Proposition 4.8 (Discrete renormalization property). Let D = (M, E) be a staggered discretization
of 2. Let (p,u) € La(2) x Hpy,0(Q) satisfy the discrete mass balance (3.4a). We have p > 0 a.e.
in Q (ie. px >0, VK € M). Then, for any b € C1([0,+00)):

div(b(p)u) . + (V' (px)px — b(px))div(u)k + Ry + R + Rk =0 VK € M, (4.11)
where 1
dlv(b(p)u)K = |K| Z |o‘| b(pa)urr ‘NK,o,
oc€E(K)
and

1
R}( N @ Z 0Tk oo - Ko and Tko =V (pKr)(ps — pr) +blpK) = b(ps),
c€eE(K)

1 ol \% 1_
Ric =h% V(o) gz D 1ol ( |D‘ )n o = prl" " (px = pr);
| |a€£(K) | Do |

Ric = hi 0 (px)(pxc = ).

Multiplying by |K| and summing over K € M, it holds

/ (' (p)p — b(p))divag udx + Ry + RE + R =0, (4.12)
Q
with
Re= > |ol(rko = TL.o)te - Nk o,
oE€Eint
o=K|L
1
o n 1_
B2 =15 3 ol (d2h) o = ol (o = pu) 0 (o) ¥ o)
JERm,
R =05 Y 1KY (or) (o — p¥),
KeM

and if b is convex then Ré’Q >0 and Ri’w > 0.

1
Remark 4.2. For b(p) = ﬁpﬁ with B > 1, the previous result gives
/ PP divu da + Re1(p,u) + Re2(p,u) <0, (4.13)
Q
with

6 . —2 —2
Re(pw) =5 lo| min(pi ™ 07 7%) (1 = prc)? [t - 1 o > 0,
0€E&int
o=K|L

1

2 B g n 1_ _ _
R () =15 57 3 1ol (1) o = ol o = )i = ) 2 0
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Remark 4.3. As explained in the continuous case, we can extend the renormalization result of
Proposition 4.8 to functions b € C°([0,+00)) NC((0,+0)), the derivative of which is not bounded
close to 0, but satisfies for all t < 1:

' (t)] < Ct=2  for some Ao < 1.

Remark 4.4. The positivity of the density and the discrete renormalization property are actually
independent of the space dimension. They are naturally valid for d = 2.

4.3 Estimate on the discrete velocity

In order to derive estimates on the discrete velocity and density, we proceed as in the continuous case
and begin with writing a discrete counterpart of the weak formulation of the momentum balance.
We begin with the following Lemma which states discrete counterparts to classical Stokes formulas.
We refer to Sections 3.2 and 4.1 for the definitions of the operators.

Lemma 4.9. Let D = (M, E) be a staggered discretization of Q. The following discrete integration
by parts formulas are satisfied for all (p,u) € La(Q) x Hpg0(Q2). One has for all v € Hp0(0Q):

—/ Agu~Hg'vdw:/VMu:VMvdw, (4.14)
Q Q
—/(Vodiv)gu~H5vdx:/divM wdivpy vde, (4.15)
Q Q
/Vg(p)~Hgvdw:—/pdivada:. (4.16)
Q Q

Proof. To exemplify, we prove (4.14). We have:

>y /K(Vu.VCa)-vc,da:

0€Eint KEM

> Z/KVu:(va@VQ,)dm

0€E it KEM

=y /KVu: > (v, © V() da.

KeM 0€Eint

7/ Agu - Ilgvde
Q

Since v(x) = Y, ce Volo(x) and v € Hpy 0(9), it is easy to check that Vo =37 o (v, ® V()
wherever v is smooth. Hence:

— [ Agu-llgvde = Z/Vu:V'udac: Vmu . Vayvde.
Q Rem K Q

O

Thanks to these formulas we easily show the next lemma which corresponds to a discrete coun-
terpart of the weak formulation of the momentum equation.
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Lemma 4.10 (Weak formulation of the momentum balance - first form). Let D = (M, &) be a
staggered discretization of Q. A pair (p,u) € Lap(Q) x Haq(Q) satisfies the discrete momentum
balance (3.4b) if and only if:

/dng(pu®u)-Hgvd:c+,u/VMu:VMvd:c+(u+)\)/diVMudivMwa
Q Q Q

fa/p“’divadmfhi‘"A/deivada::/f~H5vda:, Vo € Ha0().  (4.17)
Q Q Q

Proof. Multiplying (3.4b) by |D,|Xp,, summing over o € iy and using the discrete Stokes identities
(4.14), (4.15) and (4.16), we obtain (4.17). Conversely, multiplying (4.17) by |D, | tXp, for all
o € &g yields (3.4b). O

From this point, we assume that I" and (&1, &2, &3) satisfy the conditions (3.19)-(3.20)-(3.21).
Proposition 4.11 (Estimate on the discrete velocity). Let (p,u) € Laq(€2) x Hpy,0(2) be a solution
of the numerical scheme (3.4). Then, we have p > 0 a.e. in Q (ie. pxg >0, VK € M), and if
ha < hg (with hg depending on p, p*,Q,6y), there exists C1 = C1(f, u, p*,Q,&1,60) such that:

e} 500 < C. (4.18)

Proof. We take u as a test function in (4.17):

/Qdivs(ﬂu ®u) - Mewda + pllul? 5 o+ (1 + N)|diva “||i2(sz)

—a/p”divMuda:—hf\s,t/deivMudw:/f-ngdm.
Q Q Q

By remark 4.2 applied with =~ > 1 and 8 =T > 1, the last two terms in the left hand side of
this equality are seen to be non-negative. We thus obtain:

. 2
/QdIV(S(PU ®u) -Heude + pllully 5 o < (£ llLe ) Mewllpeq)- (4.19)

Recalling that in the definition of the convection term, u. = %(ug + u,r) for € = D,|D,yr, we get:
. 1 2
/Qde(pu ®@u) - -Heudx = 3 Z ( Z F, .(p, u)) |t |

o0€&int  ec€(Dy) .
+§ Z ( Z Fa,e(pvu) ua'uo’>7

EEint eeg’(Da)
e=Ds|D,/

o

and the last term in the right hand side vanishes thanks to the conservativity of the dual fluxes
(assumption (H2)). Using the mass conservation equation satisfied on the dual mesh (3.15) in the
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first term, we get (denoting p the piecewise constant scalar function which is equal to pp, on every
dual cell D,, and which satisfies p > 0 (because p > 0) and [, pdz = [, pdz = |Q|p*):

1
‘/Qdng(qu?u) -ngda:‘ = 3 h%

[ =) Wewp da| < 18, 191" Mewl o
Injecting in (4.19) yields:

2 2
T 5 i < 11l ) Mellne o) + 25412 o* [ Teullf o o)-
Thanks to the continuity of operator Ilg: [[Ilgullpqq) < Cllullgeq), to the inverse inequality

_1
[l @) < haf [Ullgs(q), and to the discrete Sobolev inequality [|ullpsg) < Cllully o a4 (With C
only depending on 2 and 6), we obtain:

2 —1 2
plll o.n < C(1F sy el ae + 1S 190" 0l 5.0 ).

Applying Young’s inequality, we get that for all k > 0:

_ N C
(1= Cri = Ch 9 p) [ulli o < - IF a0
Since & > 1, taking haq and x small enough yields:
2
[ull 2.0 < Cn,y

where C7 only depends on f, u, p*, Q, & and 6.
O

Remark 4.5. The control on the discrete velocity is also independent of the space dimension. It
is valid for d = 2 with the less restrictive assumption & > 0.

4.4 Estimates on the discrete density

We derive an estimate on the discrete pressure following the same lines as in the continuous setting.
One remarkable property of the staggered discretization is the existence of a discrete analogue to
the Bogovskii operator, which is also equivalent to an LY inf-sup property satisfied by discrete
functions. We refer to the appendix, Section C.3, for the proof (see also [21] for a proof which
concerns the MAC scheme).

Lemma 4.12 (L9 Discrete inf-sup property). Let D = (M, &) be a staggered discretization of §2
such that Op < Oy (where O is defined by (3.1)) for some positive constant 0y. Then, there exists
a linear operator

BM : LMy()(Q) — HM’()(Q)

depending only on  and on the discretization such that the following properties hold:
(i) For allp € Lap (),

/rdivM(BMp)da::/rpdm, vr € Ly (Q).
Q Q
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(i1) For all g € (1,+00), there exists C = C(q,d,,00), such that

1Braplly gng < Clblla-

Before deriving the control of the discrete pressure, we first present a second form of the weak
formulation of the momentum equation which will be more convenient to handle.

Lemma 4.13 (Weak formulation of the momentum balance - second form). Let D = (M, &) be a
staggered discretization of  in the sense of Definition 3.1. The discrete weak formulation of the
momentum balance (4.17) can be written in the following form:

- /Q(ng)(ng) ® (Ileu) : Vevde
+,u/QVMu:VMvdm—l—(u—i-)\)/QdivMudivada:
—a/ﬂp”divMUdm—hff;(/QprdiVMvd:c—i—Rconv(p,u,v):/Qf~1'[gvdac. (4.20)
where

Reonv(p, u,v) = / dive(pu @ u) - gvda + / (Pep)(eu) @ (gu) : Vevde.
Q Q

Assuming that v € (%, 3], O < Oy and hpq < 1, the remainder term satisfies the following estimate
for some constant C = C(Q,~,T,00):

1-3(:5+¢) .65 )T 2
‘Rconv(p7uav)‘ < Chyy, Ih5p ||L1+n(Q)Hu||1,2,M ||'U||1,2,M (4.21)
E2— 1 — o (735 +€3) o
+Chy " T thaerL’fwg)|IUI|1,2,M H”H1,2,M

Proof. This result is proved in Appendix A.2 (Lemma A.2). O

Remark 4.6. Note that in the previous inequality (4.21), under the conditions (3.20)-(3.21) (since
L < 1), we guarantee that:

14+n —
1 1/ 3 n 5 (3
zr<1+n+53> >1+n4r(1+7ﬁ53)’
1 1 3 1 b) 3
| ey O I ey P
oy Tr <1+n 53) ST mr <1+77 53)
so that the exponents of haq appearing in (4.21) are positive under the assumptions (3.20)-(3.21).

We may now prove the following result which states mesh independent estimates satisfied by
the discrete density when (p,u) € La(Q2) x Haq,0(£2) is a solution of the numerical scheme (3.4).
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Proposition 4.14. Let (p,u) € Ly () x Hpag,0(R2) be a solution of the numerical scheme (3.4).
Then, we have the following estimates:

o There exists Cy = Co(f, 1, N, p*, 7, T, &1, 82,83, 00) such that:
ollscr-1 () + 1754P" aen(gy < Co- (4.22)

e There exists C3 = C3(f, pu, \, p*, Q,7v, T, &1, &2, €3,00) such that:

_ 5 (8 ¢
S Jol(or = pxe)* o - 10T < Calipd () (4.23)
0€E&int
o=K|L

Remark 4.7. Note that from (4.22) we can easily deduce by interpolation between Lebesgue spaces
that for all p with 1 < p <1+, there exists r € [0,1) depending on p and v (withr =0 if p=1)
such that:

h§3 (1-r) hf\?;l(lfr)’

15" oy < BSlP" sty 197 gy < 1% 1oy 10 Pllpreaq < Ca
(4.24)

U)Zth C4 = C4(.fa/'Lv>\7p*79777]-—‘751752753)0071))'

Remark 4.8. Estimate (4.23) combines a so-called “weak BV estimate” and an estimate on the
discrete H'-semi norm of the density. Actually, as shown in the proof thereafter, if v > % we have:

< (4.

> ol (o — pr)? o - <
o€Eint
oc=K|L

14n
&2 | n
M 1Pl 140

1

In the rest of the paper, we will not distinguish the cases v > > Tand vy < I, and we will assume that

we are in the worst case, i.e. that we have (4.23).

37

Proof. Let us set P(p) = ap” + hﬁ@lpr. Similarly to the continuous case, we apply Lemma 4.12 to
P(p)"— < P(p)" > and we define v € Huo(Q2) by v = Bm(P(p)"— < P(p)" >). There exists
C = C(9Q,,00) such that

[0[l1,2,0 < ClIP(P)"= < P(p)" >lp2(q)

1
1Pl ey)

22
<C(IPE e +

< ClIPO)Lren(q)

where in the last step we have used Holder’s inequality in both terms (we recall that n = 2”’7—73 <1
for v < 3). With the same arguments, we have

||U||1’1j7]”,/\4 <C|P(p )HL1+n(Q
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Taking v as a test function in (4.20), we obtain:

| P rda =< Py > ( [ 7o) dw)
- /Q(PSP)(HSU) ® (Ilgu) : Vevde 4—,11/Q Vmu: Vayvde

—|—(u—|—/\)/divMudivadm—/f~Hgvdm+RconV(p,u,v)
Q Q
=T+ -+ T (4.25)

We estimate the T; as follows. First for Tj, following the same calculation as before we have

C = C(a,Q,7,0y) such that:
1l = ([ Plae) < Per >
Q

<( [ Po) ) 1P e
The integral is controlled as follows
r
[ P@)d < alloli o + Kl

1—r r (1—r I'r
< C ol ey I sy + B2 oISy ol )

where we have used interpolation inequalities with r1, ro € (0, 1) such that

1 T1 1 T2
S=1=-r) 4+ - S (l—rg) -
¥ ( ) (1 +n) r ( ) L(1+mn)

Hence, by a Young inequality, we have C' = C(Q,~,T, &3, 00) such that:
T < C + |P(o)||1 "
1711 < €+ 1Py

The second term is controlled as follows, with C' = C(9,~,6):

|T2| = ‘ /Q(ng)(ng) & (ng) :Vevdx

1,“—7"7/\/1
1 2
< CP() 1A% 1l oy PP [Frin ey

1 1
<C+ g”P(P)Han(Q)-

Next, observing that [[divas 12y < \/§||'v||1,2’/\/l for all v € Ha (), we have C = C(Q,, b))
such that:

ITs] + [Tl < (14 3(p + M) [ully 2 p1 10111200 < CCr (4 3( 4+ X)) 1P [ rn ()
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By the discrete Poincaré inequality, the term Tj satisfies with C = C(Q,~, 6p):

T5] < [[£lle2 (o) Mevlge o
< Clfllz (o) IollLz o)

<C ||fHL2(Q) ||P(P)H21+n(9)'

Hence we get:
1 1
Tl + Tl + |T5| < C + ZI1P(p) It -

The last term Tg is the remainder term Recony(p, w,v) in the weak formulation of the momentum
balance (4.20). We have thanks to (4.21), with C' = (,~,T, 00):

1

1_1.0.3
|T6| = |Rconv(p;u,’v)| < Ch_/z\/l F(1+71

+&3)
Hh P HL1+n(Q ||u||172,M ||'UH12M

+ Chi7?77(1+77+53 ”h§3

As a consequence of Remark 4.6, there exists v > 0 such that

|T6| < Chljq ||u||1 2,M ||h p ||L1+n Q)H'U”1 am + Ol el ,A/t”h p ||L1+n Q)HUHLZ,M
< Chijy ||u||1 2,M ||h p ||L1+u Q)HP( )HLlJrT/(Q) + Chly [Jully 2/\A||h p ||L1+n Q)HP([))H21+W(Q)
v +7 v 17+
< W [l p PO )+ O Il pg 1P,

1 1
<C+ gHP( )”an Q)

since % and 7%1‘ are both less than 1 (consequence of (3.20)). Gathering the bounds on T7,..,T and
coming back to (4.25) we get:

/Q(P(p))”’7 de < C’+%/Q(P(p))1+’7 de.

This achieves the proof of (4.22).
It remains to prove (4.23). Taking 8 = 2 in the discrete renormalization identity (4.13), we get:

1+
S lol (s = i )? e sl + Wi lol Ly < = [ divude
Ein m Q
i

with, if ¥ > Z (and thus 3(y — 1) > 4):

<P 2 ldivac w2 g

/ P2 div g ude
Q

2 .
< lpllLa ) lldivac wllpz o)-
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and otherwise (i.e. for v € (2, I)):

/deiVMudm < /p%p%divMudx
Q Q
5 3 .
< ||PHﬁoo(Q)||p||E%(Q)”leM u||L2(Q)
—s (2, 5 3 '
< 00,7, T 0ot O g ot 1ol o ldivad

This achieves the proof of (4.23).

4.5 Existence of a solution to the numerical scheme

The existence of a solution to the scheme (3.4), which consists in an algebraic non-linear system,
is obtained by a topological degree argument. Its proof is based on an abstract theorem stated in
Appendix B.1, which relies on linking by a homotopy the problem at hand to a linear system.

Let N = card(M) and M = d card(&iy); we identify La(Q) with RY and Hpy 0(€2) with RM.
Let V =RY x RM. We consider the function F: V x [0,1] — V given by:

1 —
TR Y Frolpu) + % (px = p*), KeM
ceé(K)
_ 1
Flp,u,0) = 57|D | > Frpwuc+35a(Ve(p"))p, + 65 (Ve(p")n, (4.26)
7! ceé(Dy)
—p(Aeu)p, = (u+ ) (Vodiview), — (e £) i, 0 € Ent.

Solving the problem F(p,u,d) = 0 is equivalent to solving the following system analogous to (3.4):
Solve for p € Lyp(Q) and uw € Hpqo(Q):

§divag(pu) + b5 (p— p*) — 3R A 1o p(p) =0, (4.27a)

§dive(pu @ u) — pAgu — (4 N)(V odiv)eu +6aVe(p?) + 615 Ve(ph) =T f.  (4.27b)

Note that system (3.4) corresponds to F(p,u,1) = 0. An easy verification shows that any
solution (p,u) of the problem F(p,u,d) = 0 for § in [0, 1], satisfies the same estimates as stated
in Propositions 4.7 (positivity of p) and 4.11 (estimate on |||, , »,) uniformly in 6. However, the
positivity of the density is not sufficient to apply the topological degree theorem stated in Appendix
B.1. We need to prove that there exists a positive lower bound on p, if (p, u) is a solution of (4.27),
which is uniform with respect to 6 € [0,1]. For the lower bound, we use Proposition 4.7 and
the fact that [lul|, 5 , < C1 uniformly with respect to § € [0,1] which implies that the quantity

max div(u)f is also controlled uniformly with respect to & € [0,1] as follows: there exists K € M
€
such that
1 N
max div(u)x| = |div(u) | = & ‘/K divau de| < K]~ [|divufpa g
f— 1 S 1
< VBRIV wlga s < VBRIV wlyagops < /3 max KT 101
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Thus, a positive lower bound on p, if (p, u) is a solution of (4.27), which is uniform with respect to
0 € [0,1], is given by:

*

P

ﬁmin: — .
1+hs /3 K[1C
Tl 3 s KT G

We also obtain a uniform upper bound on p by remarking that:

(4.28)

—1 _ —1 *x .=
ol (@) < max || llpllLy) = max [K[70 Q0" =: pmax.

We may now prove the following result.

Theorem 4.15 (Existence of a solution). Let D = (M, &) be a staggered discretization of Q in
the sense of Definition 3.1. The non-linear system (3.4) admits at least one solution (p,u) in
La(Q2) x Hag,0(9), and any possible solution satisfies the estimates of Propositions 4.7, 4.11 and

4.14.

Proof. This proof makes use of Theorem B.1. Let F be the function defined in (4.26). The
function F is continuous from V' x [0,1] to V. It therefore defines a homotopy between the problem
F(p,u,1) =0 and F(p,u,0) = 0. The first hypothesis of Theorem B.1 is satisfied and defining

0= {(p, u) €V sit. ”f;i“ <P <2 Pmans [l op < 201},

the second hypothesis of Theorem B.1 is also satisfied. Therefore, in order to prove the existence of
at least one solution to the scheme (3.4), it remains to show that the topological degree of F(p,u,0)
with respect to Oy and O is non-zero. The function G : (p,u) — F(p, u,0) is clearly differentiable
on O, and its jacobian matrix is given by

B Idgnxn ‘ 0

Jac G(p,u) =

)

0o |4

where A € RM*M i5 the mass matrix associated with the finite element discretization of the
following elliptic problem:

Find w € H{(Q) such that :

—pAu — (p+A)V(divu) = f, in Q. (4.29)

By the coercivity of the discrete diffusion operator, the matrix A is invertible and the discretization
of this elliptic problem has one and only one solution. Hence, by the first block of equations in
F(p,u,0) =0, there exists one and only one point of O such that F(p, u,0) = 0. Since the Jacobian
matrix at this point Jac G(p, u) is invertible (since Idgnvx~ and A are invertible), this implies that
the topological degree of F(p,u,0) with respect to O and 0 is non-zero. Therefore, by Theorem
B.1, there exists at least one solution (p,u) to the equation F(p,u,1) = 0, i.e. to the scheme
(3.4). O
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5 Proof of the convergence result

We recall the hypotheses of Theorem 3.1. Let € be a polyhedral connected open subset of R3. We
assume that v € (%, 3], f € L%(Q) and p* > 0. Regarding our discretization, denoting 7 = =3 ¢

B!
(0, 1], we assume that I' and (&;,&2,&3) are such that:
(@  &>1 (5.1)
. ) 3 n 1
i T <z )
@ Ir <1+n+€3><1+n =9 (5-2)
.1 5 (3 1+ 5 ( 3
i) ce< g (i ve) )

Let (D, )nen be a regular sequence of staggered discretizations of Q as defined in Definition 3.3.
We denote h,, instead of haq, in order to ease the notations. Similar simplifications will be used
thereafter.

Theorem 4.15 applies and without loss of generality (assuming h,, is small enough for all n € N),
we can assume that for all n € N there exists a solution (o, u,) € Lag, (€2) x Hq, 0(€2) to the
numerical scheme (3.4) with the discretization D,,. In addition, the obtained density p,, is positive
a.e. in Q. Since Oy, < 0y for all n € N, the sequence (p,, U, )nen satisfies the following estimates.
There exist Cp > 0, p € (1,1 +1n) and r € (0, 1) such that:

ot B (12 4e Lin
H'U:n”Lz,M” + ||p'fLHL3(’Y—1)(Q) + thbspEHLl-m(Q) + hn2 i (i +ts) |on] 11y M,

n

—&3(1—r (5 t€
RSO IIRE ey + B TS ol (o — p1)? [ty o] < Co, YmEN. (5.4)

0EEn, int
oc=K]|L

In order to ease the notations, the subscript n has been omitted in the above summation on the
internal faces of &,.

Thanks to these estimates, there is a subsequence of (D, )nen, still denoted (D, )nen such that

(pn)nen weakly converges in L30=1(Q) to some p € L3O =1(Q), and (p))nen weakly converges in
3(v—1) N 3(v—1)
L~ (Q) to some p¥ € L K (©). The compactness of the sequence of velocities relies on the

following theorem (proven in Appendix C, see also [20], [38]) which is a compactness result for the
discrete Hj-norm similar to Rellich’s theorem.

Theorem 5.1 (Discrete Rellich theorem). Let (Dy,)nen be a sequence of staggered discretizations
of Q satisfying Opq, < 0y for alln € N. For alln € N, let u, € Hq,, 0(Q2) and assume that there
exists C € R such that |[un, 5 o, < C, Yn € N. We suppose that h, — 0 as n — +o00. Then:

1. There exists a subsequence of (W, )nen, still denoted (u,)nen, which converges in L2()) to-
wards a function u € L*(Q).

2. The limit function u belongs to H} () with [Vullgzqp < C.
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3. The sequence (V ap, Un)nen weakly converges to Vu in L2(£2)3.

Hence, upon extracting a new subsequence from (D,,),ecn, we may assume that there exists
u € H}(Q) such that the sequence (u,)nen converges to w in L?(Q). By the discrete Sobolev
inequality of Lemma 4.1, we can actually assume that (w,),en converges to uw in L%(Q) for all
q € [1,6) and weakly in L°(Q).

Following the same steps as in the proof of the stability property (Theorem 2.2) in the continuous
setting, we first pass to the limit n — 400 in the mass and momentum equations in Sections 5.1
and 5.2 and then pass to the limit in the equation of state in Section 5.3, by proving the strong
convergence of the density.

5.1 Passing to the limit in the mass conservation equation

Proposition 5.2. Under the assumptions of Theorem 3.1, the limit pair (p,u) € L30~1(Q) x
H}(Q) of the sequence (pn,un)nen satisfies the mass equation in the weak sense:

—/ pu-Vodx =0, Vo € C° (D). (5.5)
Q

Let us first state the following lemma which will be useful in the proof of Proposition (5.2).

Lemma 5.3. Let ¢ € C°(Q2). For n € N define ¢y, 6 LM (Q) by ¢n)x = ¢ the mean value of
¢ over K, for K € M,. Denote ¢, = |o|~" [ ¢(x)do(x) for all o € &, and define a discrete
gradient of ¢, by:

Vaon@) = 3 (Vo) Xi(e), with (Vo)== S loldonr..

KeM, K] o€E(K)

Then for all q in [1,00], there exists C = C(8,q, ®,60) such that:

1% 7,60 = Vllgagay < Chn. (5.6)
Proof. Let q € [1,+00). We have ||V a1, én — VollLa) = e, [Vm,dn — V&l with for
KeM,:

__ 1 q
IV stun =Vl = [ | 3 Iol oo, - Vo) da

ceE(K)
:/K UE;K)/Qs y)do(y) o — Vo) da
- /K % [ o) do(y)ni - Vo)
J,

i [ (Vo) - Vqs(w))dy\qdm

/K IK/ Vely ¢($)|dy)qdm.
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By a Taylor expansion, we have for all y, € K, |[Vo(y) — Vo(x)| < hy, |¢‘W2'°°(Q)’ Thus we have:

IV pMi bn — Vd)Hiq(K) < hi |¢‘%v2>°c(ﬂ) | K| which concludes the proof for ¢ € [1,+00). The proof is
similar for ¢ = 4oc0. O

We can now give the proof of Proposition (5.2).

Proof of Proposition (5.2). To prove this result we pass to the limit n — +oo in the weak for-
mulation of the discrete mass balance. Let ¢ € C°(Q2) and for n € N define ¢,, € Ly, () by
¢n |k = ¢r the mean value of ¢ over K, for K € M,,. Multiplying the discrete mass balance
(3.4a) by |K|¢x Xk, summing over K € M,, and performing a discrete integration by parts (i.e.
reordering the sum) yields:

- / (Pe, pn) (Mg, un) - Ve, ¢, dz + Ry + Ry =0, (5.7)
Q

with
P=h5 Y IK|(px — ") ¢k

KeMy,

F=h% Y ( > |(g||) lox — prl7™ (PK—PL))%(,

KeM, oce&(K)
where V¢ is the discrete gradient defined in (3.17) and Pg¢ is defined in (4.8).

In order to prove Proposition 5.2, we want to pass to the limit in the first term of (5.7). It is
possible to prove that (Ilg, u,) — u strongly in L?(Q). However, the discrete gradient Vg, ¢,, in
known to converge only weakly towards V¢ because locally on a dual cell D, it is supported by only
one direction, that of the normal vector ng ,, and since, at this stage, p, converges only weakly
towards p (in L30=1(Q)), we cannot expect more than a weak convergence for Pg, p,. Thus, it is
not possible to pass to the limit in the present form of (5.7). Instead, we use the discrete gradient
V m, ¢n introduced in Lemma 5.3, which is known to converge strongly towards V¢.

‘We have:

- / (Pe,pn) Mg, un) - Ve, bp dz=— > |0|po (61 — bK) Us - MK o
£ 0E€ER int
oc=K]|L

=— Y lol3(px +pL) (b — ¢K) Us - Nk o + RE, (5.8)

Uegn,int
oc=K]|L
with
5= Z o] (%(PK +pL) = po) (PL — PK) Us - MK o
0€En int
oc=K]|L
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Reordering the sum in the first term of (5.8) we get:

—/Q(Psnpn) (Hg,un) - Ve, ¢ dx

=3 3 (X 1ol ) maa) + R,

KeM, ce&(K)
o=K|L
1
- 3 pKuK.( 3 |a|(¢L—¢K)nK,U)+Rg+Rg, (5.9)
KeM,, UG:‘:(K)
o=K|L

where ug is the mean value of u,, over K and

RZ:% Z PK( Z |0|(¢L—¢K)(UK_“J)‘nK’U)'
KeM, oef(lf)
o=K|L

Back to (5.9), we have:

- / (P, pn) (e, wn) - Ve, 6 da

== 3 oxuk- (D 1ol b (6n+ o) i) + Ry + Ry + R

KeM,, ceE(K)
o=K|L
== 3 pxux-( Y loldonus) + Ry + Ry + R + Ry
KeM, ceE(K)
:—/pnun-VM”¢dw+Rg+Rz+Rg+Rg. (5.10)
Q

where :

5= Z PKUK<Z5K'< Z |0|nK,a),

KeM,, oeE(K)
i= > xuc (X 10160 — $(01+ 6x))nic ).
KeM,, ceE(K)
oc=K|L

Replacing (5.10) in (5.7) we get:
—/pnunVMnapderRy+R;+R§+R2+Rg+3g:o. (5.11)
Q

Since u, — w strongly in L%(Q) for all ¢ € [1,6), and Vo, ¢ = V¢ (by (5.6)) in LS(Q)? as
n — +o0, we have u, - Vq, ¢, — u - V¢ strongly in L37(Q) for all § € (0,2]. Furthermore, we
have p, — p weakly in L3O~ (Q) with 3(y — 1) > 2 (since v > 2), which yields:

n—-+o0o

lim P Un 'VM,I,% de = / pu-Voda.
Q Q
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It remains to prove that 2?21 R} — 0 as n — +o00. In the following, in order to ease the notations,
we denote A, < B, when there is a constant C, independent of n, such that A,, < C B,,. We easily
prove that R} — 0 and RS — 0 as n — +o00. Indeed, one has:

|RY| < 2h§f |€2[p* ||¢||L°°(Q)7

which proves that R} — 0 since £; > 0. For R%, reordering the sum, we get:

g 5 1
B3 < 1§ Y Jo] (12h) " Iowe — ol s — ol

TEEn, int |DU|
oc=K|L
< &2 |U| Tl’ L
S 190l iz 32 101 (757)" loxe = ol
Uegn,int 7
oc=K]|L

Applying Holder’s inequality (with coefficients 1 4+ 1 and (1 4 n)/n) to the sum, we get:

R3] S IV lLee () 121747 R (ol 1y
n

1

< hﬁ(srﬁ<ﬁ+53))(hﬁ@ﬁ%(%ﬁm\p\M) ”
n

Thanks to (5.4) and to assumption (5.3), we have R} — 0 as n — +o00. Let us now turn to Rj.
Recalling the upwind definition of p,, we get:

|R5| < Z o] lpre — pLl oL — ¢xc| [Uo - MK o).

0E€En,int
o=K|L

DN =

Applying the Cauchy-Schwarz inequality, we get:

n 1 2
<3 (X Jollox —pel o macol)” (30 lollon — bl uso - maco)

Nl=

0E€EN, int 0€ER, int
o=K|L oc=K]|L
5 i_;'_g, 1
,Sh” 8F(1+" 3) ( Z |GH¢L—¢K|2 |ua'nK,a|>2
0E€EN, int
o=K|L

by estimate (5.4). By Taylor’s inequality applied to the smooth function ¢ and the regularity of
the discretization, we have |¢r, — ¢x|* < hy |Do|/|o] ||V¢Hi°°(Q)' Hence:

5

ap_ 3 _¢ 3 s (ap_ 3 _¢ 1
R il (I ST LY e S N

0€En, int
oc=K|L
2 (4r—8 ¢ 1
5 hSF(S 1+n 3) Hun||12,1(Q)

since [|wn g6 (q), and thus [[us |y (q), is controlled by [lwn||; 5 o4, Which is bounded by Cy. Since
(T, &3) satisty (5.2) we get R — 0 as n — +00. We now turn to Rf. By a Taylor inequality on the
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smooth function ¢ and the regularity of the discretization, we have: |¢r — ¢x| < hy ||V¢||Lm(9).
Hence:

R Sha > px Y o] luk —ul. (5.12)
KeM,  o0c&(K)

The vectors ux and u, are the mean values of u over K and o € £(K) respectively. By the
Cauchy-Schwarz inequality, we can prove that:

1 1
=l < e [ ) - @) dzdo).

Since u,, is smooth over K we have for @, y € K:
1
()~ wn@)P <[y~ 2P [ [Vulty + (1= o) dr.
0

2
Bounding |y — x| by hx we obtain, using Fubini’s theorem that |ux — u,|? < (LYK'HVunHi%K)g.
Injecting in (5.12), and invoking the regularity of the discretization we get:

1
RIS hn Y K[ 0k |Vt e
KeM,

1-30=1) 1 3(x=1)
Shalonlies s S 1Ko 1V tnllgagys
KeMy,
5—3v 3(v—1)
S hn ||Pn||Loi(Q)||Pn||L3(2w—1)(Q)||un||1,2,Mn'

1
Thus, by the inverse inequality [|pn 1 q) S oin """ [|PnllLst-1) () and since the sequence (pn)nen
is bounded in L*0~1(Q) and the sequence ([|wn|l1 5 s, Jnen is bounded we get:

1 5-3y 5y—7

R Sha 77 2 =hi0D.

Since, v > % > %, we deduce that R} — 0 as n — +o0.
The fifth remainder term satisfies Ry = 0 since Y- ce(x)l0|nK,e = 0 for all K € M,. Let

us conclude with the control of Rf. Denoting bo = %(qSL + ¢k) for 0 = K|L, we may write
¢ = Rg 1 + R o with:

= > o D 11(00 = do) (ur — u0) mica)

KeM, ce&(K)
o= 2 o D 101 (60— b)us e, ).
KeM,, ceE(K)

The term Rg, can be controlled the same way as R} and we obtain Rf; — 0 as n — +oo.
Reordering the sum in Ry, we get:

g,Q = Z |J| (PK - PL) (¢0 - ¢0) Uy " NK,5-
0E€En int
o=K|L

Hence Rg, can be controlled the same way as Rg and we obtain Rg, — 0 as n — +00 and this
concludes the proof of (5.5).
O
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5.2 Passing to the limit in the momentum equation

Proposition 5.4. Under the assumptions of Theorem 3.1, the limit triple (p,u,p7) € L30~D(Q) x
3(y—1)
H}(Q) x L K () of the sequence (pn,Un, p))nen Satisfies the momentum equation in the weak

SENSE:

—/pu®u:V'uda:+u/Vu:Vvdw—l—(u—l—)\)/divudivvdw
Q Q Q

—a/ﬁdivv da::/f~vd:c, Yo € C(Q)%. (5.13)
Q Q

Moreover, we have the following energy inequality satisfied at the limit:
,u/ |Vu|>de + (A + /L)/ (divu)? dz < / frude. (5.14)
Q Q Q

Let us first state the following lemmas which will be useful in the proof of Proposition (5.4).

For D = (M, €) a staggered discretization of Q, we define Ir the following Fortin operator
associated with the Crouzeix-Raviart finite element:

Wh(Q) — Hu(Q)

Im: v — Iyv = ng Cyy With vy =|o|™? / vdo(z) for o € £. (5.15)
o€& o

The following lemma states the main properties of operator 1. We refer to the appendix, Section

C.2, for the proof. See also the appendix of [23].

Lemma 5.5 (Properties of the operator Ing). Let D = (M,E) be a staggered discretization of
Q such that Opg < Oy (where Opnq is defined by (3.1)) for some positive constant 6y. For any
q € [1,400), there exists C = C(0y,q) such that:

(i) Stability:
1,
[Tmully g i < C ulwio), Vu € Wy (Q).

(i) Approzimation: For all K € M:

[lw— IMuHLq(K) +hi [[V(u - IM“)||Lq(K)3
< Ch¥k lulweaxy,  Yu € W29(Q) N Wy(Q).

(iii) Preservation of the divergence:

/pdivM(IMu)dw:/pdivuda:, Vp € Lam(Q), uEWé’q(Q).
Q Q
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Lemma 5.6. Let v € C°(Q)3. Let (Dn)nen be a reqular sequence of staggered discretizations
as defined in Definition 8.5. For n € N define v,, € Hpq, 0(Q) by v,, = I, v. Then, for any
q € [1,400), there exists C = C(Q,q,v,0y) such that:

|vn — v”Lq(Q) < Chfm (5.16)
IV M, vn — V”HLq(Q)s < Chy, (5.17)
[Te, vy — 'U||Lq(Q) < Chy,. (5.18)

In addition, denoting v, = |o|~* fa vdo(x) for all o € &, we define a discrete gradient of v, by:

_ 1
Vamvn(@) = Y (Vo) Xe(x), with (Vov)k = ] > olve @ nk .
KeM,, g€E(K)

Then for all q in [1,00], there exists C = C (£, ¢q,v,00) such that:

Hanvn - Vv”Lq(Q)S < Chy,. (5.19)

Proof. The estimates (5.16) and (5.17) are direct consequences of the approximation properties of
the interpolation operator Irq,. The proof of (5.19) is similar to that of Lemma 5.3. Let us prove

(5.18).
||H£nvn - 'UTLH(]I_,q(Q) = Z Z 5 - 'Un )|qdw
KeM,, oes(K)” P
q
-y x> / v (o) d
KeM, oeg(K)” Pr.o o eS( )

DD SR I ID DI CETI IR

KeM,, oce(K)? PK.e 5rce(k)
3—q 2
S b §, Wi § [vo —vor|”.
KeM, o,0'€E(K)

Hence we have [[lg, vy — Onllpaq) S fnllvnlly ge, S o llvnlli g, S halvlwia(q)s- Combining

~

this with (5.16) yields the result. O
We can now give the proof of Proposition (5.4).

Proof of Proposition 5.4. To prove this result, we pass to the limit n — +oc0 in the weak formulation
of the discrete momentum balance. Let v € C2°(Q)? and for n € N, define v, = Inq,v € Hpg,, ().
We have [|v,|[; , o, <C HUHW},"Z(QP for all ¢ € [1,+00) by Lemma 5.5. Taking the test function
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v, in the weak formulation of the discrete momentum balance (4.20), we get for all n € N:

- / (Pe, pn) Mg, up) @ (g, wy,) : Ve, v, de
Q
+ u/ Vo, Un : Vag, vpde + (p+ /\)/ div ag, Wy, divg, v, de
Q Q

- a/ﬂpz div g, v, dx — /Q s pL div aq, Vi + Reony (Pr, Un, Un) = /Qf g, v, dz.  (5.20)

The term involving the artificial pressure tends to zero as n — +oo since (h52pL),en converges
strongly to 0 in L?(Q) for some 1 < p < 1+ 7 (see (5.4)) and (divay, vy )nen is bounded in L(2)
for all ¢ € (1,+00). On the other hand, Lemma 4.13 gives

3=t () e ryd 2
‘Rconv(pnvun7vn)| < Chn ||hn p ||L1+"(Q)||un”1,2,Mn ||'U” |1,2,Mn

1

So—g— e (T +6s o
+Chy 7 'F(H' )||h§13l7£||£f+n(g)H“n||1,2.,M,,, ||'UnH1,2,an

with C independent of n, so Reony (Pn, Un, V) — 0 as n — +o0o using Remark 4.6. We also easily ob-
tain the convergence of the diffusion and pressure terms. Since (V aq, Up )nen (resp. (divag,, Un)nen)
weakly converges to Vu (resp. divau) in L2(Q)3, (p])nen weakly converges to p7 in L*7(Q) and

(Va, Un)nen (resp. (divag, vn)nen)) strongly converges to Vo (resp. divw) in L(2)3 for all
q € (1,+00) we obtain:

lim (u Vi, tn: Vg, vpde + (4 A) / div g, wy, divag, v, do
n—-+oo Q Q

—a/p%dian vnda:—/f-Hg"'vnda:>
Q Q

:u/Vu:V'Udm+(,u+)\)/divudivv dm—a/ﬁdivvdm—/f~vd:c.
Q Q Q Q

The convergence of the source term is given by (5.18).

Let us now prove the convergence of the convective term. We have:

- / (e, pn) (e, 1) © (s, ) : Ve, 0, dae
Q

— Z o] po o @ Uy : (VL —VK) @NKp
0E€ER, int
o=K|L

=— Z |U\%(pK+pL)uU®ug:(vL—UK)®nK,U+R?, (5.21)
0€En int
o=K|L
with
?: Z |J|(%(PK+PL)_PJ)UJ®UJZ(UL—UK)®TLK,U~
0€En int
o=K|L
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Reordering the sum in the first term of (5.21) we get:

- / (P, pn) (g, un) @ (g, uy,) : Ve, v, de
Q

1
:—5 Z PK Z |O’|’u,o—®u02(’UL—’UK)(X)’I’LK’U-FR;L
KeM,  oc&(K)
o=K|L

1
=75 > pruxk@uk: Y |o|(v—vk)®@nke+ R} + RY, (5.22)

KeM, c€E(K)
o=K|L

where ug is the mean value of u,, over K and
1
B=3 ook Y lol(uk @ uk —us @u,) : (v — VK) ® Nl
KeM,  occ&(K)

o=K|L

Back to (5.22) we get:

- / (P, pn) (e, 1) @ (s, ) : Ve, 0, dz
Q

= — Z PK UK QUK : Z |0"%(vL‘FUK)@nK,U"'R?'i'Rg_'—RgL
KeM,, o€&(K)
o=K|L
=— Y prux®ug: Y |o|v,®nk.+ R+ RS+ R+ R
KeM,, cEE(K)

—/pnun@)unvanvn dx + R} + Ry + Ry + R},
Q

with
n = Z pKuK®uK:vK®( Z |a\nK7,,),
KeM, O'EE(K)
1= Z PE UK D UK : Z o] (v — 3(vL +vK)) @ Nk 0.
KeM, oc€E(K)
oc=K]|L

Since u, — u in L9(Q) for all ¢ € [1,6), and Vg, v, — Vo in L™(Q)? for all r € (1,+00), we
have u, ® U, : Vo, v, — u®@u: Vo in L379(Q) for all § € (0,2]. Furthermore, we have p, — p
weakly in L3001 (Q) with 3(y — 1) > 2 (since v > 2), which yields:

lim —/pnun@)un:Vann dw:—/p'u@u:Vvdac.
Q Q

n——+oo
In order to complete the proof of Proposition 5.4, it remains to prove that Z?Zl R} =+ 0asn — +o0.

In the following, in order to ease the notations, we denote A,, < B, when there is a constant C,
independent of n, such that A,, < C B,,. We begin with R}. Recalling the upwind definition of p,
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and the fact that a®@b:c®d = (a-¢)(b-d) for a,b,c,d € R? we get:

1
IRY <5 Y lollox = pollte - nkol [vr — vl [tg].

-2
0E€ER, int
o=K|L

Applying the Cauchy-Schwarz inequality, we get:

D=

) (X Ioton vkl )

1
Ri <5 (X lollox = o luo - nice

S 2 0E€En, int 0€En int
oc=K]|L oc=K|L
_ 5 i_ﬁ_ 1
Shnsr(ﬁ—n 53) ( Z |0||’UL—’UK|2 |Ua|3)2
0€ER, int
oc=K]|L

by estimate (5.4). By Taylor’s inequality applied to the smooth function v and the regularity of
the discretization, we have |[vy — vi|? < hy, |Dyl|/|o] ||V'vHioo(Q)3. Hence:

1w ) g gy 0 () < aif(r-st=e)

3
||Un|\12,6(9)

since [|unl|g6 (o) is controlled by [lwn || 5 x4, which is bounded by Co. Since (I, £3) satisfy (5.2), we
get BT — 0 as n — +o00. We now turn to Ry. We write

UK QUK — Uy DU, = (UK — Uy) QUK + Uy @ (Ug — Uy).

Hence, |R3| < |Ry,| + |RS,| with:

1
[R5 = 5 PK o] luk — e |uk||vL — vk,
’ 2
KeM, ce&(K)
o=K|L
" 1
2,21 7 o K K — WUo o L — VK|
(R0l =5 > ook D ol uk — | lug| v — v
KeM, UES(K)
o=K|L

We only treat |R5 ], since the treatment of |Ry 5| is similar. By a Taylor inequality on the smooth
function v and the regularity of the discretization, we have: vy —vk| < hn [[V|ly (). Hence:

[R5

< hp Z PK UK Z lo| lug — | (5.23)

KeMy, ce&(K)

Proceeding as in the proof of Proposition 5.2 (see the computation after (5.12)) we get:

1
IRE S b D IK1Z pic [k | [ Vatnlpa s
KeM,,
1-30=1 1 3G=D
5hn||pn||LOC(Q§ ||un||Loc(Q) Z |K|Zpg ||Vun||L2(K)3
KeM,

5-3y
S ha ||pn||Loi(Q) ||un||L°°(Q)'
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1

_ _1
Recalling inverse inequalities ||Pn||Loo(Q) S b ||Pn||L3<w—1)(Q) and ||unHL<x>(Q) S hn? Hun”LB(Q);

and since (py,)nen is bounded in L3~1(Q) and (lwn s () )nen is bounded we get:

Since, v > 2, we get R3 1 — 0 as n — +o0. As said previously, the same holds for R% 5. The third

remainder term satisfies 5 = 0 since >, (k) 0| Ko = 0 for all K € M,,. Let us conclude with

the control of R}. Denoting ¢, = i (v +vg) for 0 = K|L, we may write R} = R}, + RY 5 with:

Riy= ) pK( > IUI(uK®uK—uU®u0):(va—f)o)®nx,a),

KeM, c€E(K)
RZ,2: Z pK( Z |0|u6®u0 : (va_i’a)®nK,a)~
KeM,, oe€(K)

The term R} can be controlled in the same way as Rj and we obtain R}; — 0 as n — +oo.
Reordering the sum in R}, we get:

272: Z |U| (pK—pL) Uy @ U (vo_ﬁa)®nK,o~
0E€ER int
oc=K|L

Hence Rj, can be controlled in the same way as R} and we obtain Rj, — 0 as n — +oco. This
concludes the proof of (5.13).

It remains to prove (5.14). We proceed as in the proof of Proposition 4.11. Taking u,, as a test
function in the first form of the discrete weak formulation of the momentum equation and using
(4.13) with f =~ and =T we get:

1
315 [o =) e wnP et [ (90, de
Q Q

+(u+A) / (div g, up)?de < / f-lg, uy, de, Vn € N,
Q Q

where p,, is the piecewise constant scalar function which is equal to pp, on every dual cell D,, and
which satisfies p,, > 0 (because p, > 0) and [, p dz = [, pn dz = |Q[p*. Since (p,)nen is bounded
in L2 (Q) and (Ilg, wn)nen in LE(Q), the first term tends to zero as n — +oo. Thus, passing to the
limit n» — +oco in the above inequality and recalling that ¥V, u, — Vu weakly in L?(Q)3 and
g, u, — u strongly in (say) L2(2) yields (5.14).

O

5.3 Passing to the limit in the equation of state
5.3.1 Weak compactness of the effective viscous flux

As in the continuous case, the equation of state is satisfied at the limit as a consequence of the
convergence of the so-called effective viscous flux. Indeed, we have the following result.
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Proposition 5.7. Under the assumptions of Theorem 3.1, let (p,u, p7) € L3O ~1(Q) x H§(Q) x
3(v—1)

L™ (Q) be the limit triple of the sequence (pn, Un, p))nen. For k € N*, define

Tu(t) = { t iftelok),

k ifte [k, +o0).

The sequence (T (pn))nen s bounded in L°(Q) and, up to extracting a subsequence, it converges
for the weak-* topology in L>° () towards some function denoted Ty(p). Then (up to extracting a
subsequence) the following identity holds:

lim (2p+ A) divag, un — ap)) Ti(pn)o de

n—+oo Jo
= / ((2,u + A divu — ain)Tk(p)qi)da:7 Yo € C°(Q).
Q

Remark 5.1. As in the continuous case, this result is obtained by taking the test function v =
pw,, in the discrete momentum equation (4.20), where w,, is computed from Ty (p,) by applying
Lemma 2.8, ie. w, = ATi(py), and satisfies divw,, = Tx(p,), curlw, = 0. Unfortunately, the
discrete gradient, divergence and rotational operators associated with the Crouzeiz-Raviart approz-
imation do not satisfy a discrete equivalent of the global identity (2.19), namely

/Vu:Vvdm:/divudivv d:ch/curlucurlv dx.
Q Q Q

Instead, one needs to apply (2.18) locally on each control volume K € M,. The accumulating
boundary terms must then be controlled through an estimate of w,, in W22(Q). Moreover, it also

appears in the analysis that the control of some remainder terms involving the pressure (which is

controlled in L1T7(Q) ) requires an estimate of w,, in WQ%(Q) Since 1 > 2. this latter control

s more restrictive. Such control is what motivates the introduction of the stabilization term

Ts2tab = _h.%lA“'—" M(P)

n

in the numerical scheme. For the MAC scheme, studied for instance in [22], we directly have an
equivalent of (2.19) and T2, is useless.

The function w,, defined in Remark 5.1 is not in w2 () because Ty (py,) is not in Wl (Q).
We rather define w,, = A(iam, Tk(prn)) so that divw,, = i, Ti(pn) and curl w,, = 0 where i T (p)

147
is a regularization of Ty (p), the W semi-norm of which is controlled by |p|1ts . The operator
o
iaq 1s specified in the following definition and its properties in Lemma 5.8.

Definition 5.1. Let D = (M, ) be a staggered discretization of Q and S be the set of vertices of
the primal mesh M. For s € S, we denote by Ny C M the set of the elements K € M of which s
is a vertex. Let p € Ly (). We denote i p the function defined as follows:

b 'LMp € CO(Q)7
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o for all K € M, the restriction of ipp to K is affine,

1
o foralls €S, (imp)(s) = s > pi.
5/ KeN,

Lemma 5.8. Let D = (M, &) be a staggered discretization of Q0 such that Oy < 0y, with O
defined by (3.1). For all v € [1,+00] there exists C' = C(r,0p) such that:

lirm Pl ) < Clpllir @) Vp € Ly (). (5.24)

Moreover, for allp € Lip(Q) we have i p € WH9(Q) for all g € [1,+00) and there exists a constant
C = C(q,6) such that :

lirmp = pllLaq) + hmlim Plwray < Chmlplygm VP € Lm(9). (5.25)

Proof. The proof is similar to that of [13, Lemma 5.8]. We skip the details. O

We also have the following technical result which will be useful hereinafter. The proof can be
found in [20, Lemma 2.4].

Lemma 5.9. Let D = (M, &) be a staggered discretization of Q such that Opg < 0y (where Opq is
defined by (3.1)) for some positive constant 6. Let (ny)sce,,, be a family of real numbers such that
for all o € Eint, Ino| < 1, and let uw € Hp (). Then, for any q € (1,00) there exists C = C(q, b))
such that:

>

0€Ein¢

ne [u], fdo(x)

(e}

< Chumllully g i 1Flwiaa) VF e Wy(Q),

-1 2 /
where q' = qT, HUHLq/,M = ZKEM fK |Vl dz.

We may now give the proof Proposition 5.7 which is similar to that of [13, Prop. 5.9 and 5.10].
The main difference is that we here have to handle the additional convective term in the momentum
balance.

Proof of Proposition 5.7. Let k € N*. Since (Tk(pn))nen is bounded in L>°(€2) (by k) we have by
(5.24):

linty Ty S 1 (5.26)
Furthermore, by (5.25) and (5.4) (observing that |Tj(r1) — Tk (r2)| < |r1 — rof for all r1,79 > 0) we
have for all n € N:

. <hi¢
|L147;](Q) ~ n ’

liat, Telp)ll s 10 S he®s N, Tilpn) = Ti(pn)|

5.27
wh T () (5.27)
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where, by assumption (5.3) on &,

n 5 3

= — — | — 1. 2
3 1+n{§2+4r<1+n+§3>}< (5.28)

Let (wy,)nen be the sequence of functions defined from (iam, Tk(pn))nen by Lemma 2.8. We have

div wy, = im, Te(pn), cwlw, =0, |wnlwiao S1, Vg€ (1,+00).

Moreover, by the Sobolev injection W14(Q) C L>°(Q) for ¢ > 3, the sequence (wy,)nen is bounded
in L°(Q) and up to extracting a subsequence, as n — 400, it strongly converges in L?(€2) and
weakly in W14(Q) for all ¢ € (1,400) towards some function w satisfying:

divw =Ti(p) and curl w=0.

Inequality (5.27) and the properties of operator A yield

. 1 < liam. Th(pn < hZt. 5.29
|w IIWZ,%TL(Q)NHZMH k(p )IIWI,%n(Q)N n (5.29)

Let ¢ € C°(Q) and take v, = Ipm, (pw,,) € Hay, 0(2) as a test function in the discrete weak
formulation of the momentum balance (4.20). We get for all n € N:

- / (Pe, pn) e, upn) ® (g, wy,) : Vg, v, do
Q

Jru/ Vm, Uy Vpq, vy, do + (er)\)/ div g, uy divag, v, de
Q Q

—a/ p) divag, vy, de + RY :/f-l_[gnvn de, (5.30)
Q Q

where
'il = —/ hff’pg diVMn v, doe + Rconv(pmunvvn)'
Q

By Lemma 4.13, we have:

b4 (2746) e r 3 :
|Rconv(Pmun’vn)| < Chy [h32p ||L1+n(Q)||un||1,2,Mn

Vnll1 2.0,

I3 _1_ 1 i-ﬁ-& 1
yore O e nE g, o0

1,2,My"

Since [|vnlly 5 a1, S [[0Wnllg11(q), we can apply Remark 4.6 and we get that [Reony (pn, Un, v,)| =0

as n — +o0o. Moreover, by (5.4), we have h5*pL — 0 in LP(Q) with 1 <p < 1+17 as n — +oc.
Since (div g, Un)nen is bounded in LP (), we obtain that R} — 0 as n — +o00. Hence, denoting
0, = v, — Qw, = Iz, (Qw,,) — pw,, we have
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- / (P, pn) (e, 1) © (g, ) : Ve, 0, dae
Q

+ u/ V m, Uy V(pw,) de + (u+ )\)/ div g, uyp div(dw,) de
Q Q

n—-+o0o

— a/ prdiv(ipw,) de+ Ry + o (1) = / I (owy) dz, (5.31)
Q Q

where:

S:M/VMnun:VMnéndas+(u—|—)\)/dianundivM,ﬁndac
Q Q

—a/p;’LdivMHJndw—/f~5ndaz—/f-(l'[gnvn—vn)da:.
Q Q Q

By the properties of the Fortin operator In4,, we have [|0n 120 < hi|¢wn‘wz,1+" < h2¢

@) Y

and |0y 100 o S hn|(;5u7n\w2 Ty < hl=¢ with HT” > 2. Since (||un|l; 5 rq. Jnen is bounded,
oy Vin s 34, Mn

(P )nen is bounded in L**7(Q) (recall that 147 = @), g, v, — v, — 0in L2(Q2) as n — +o0,
and £ < 1, we get that R} — 0 as n — 4o0.

n?

Applying the identity (2.18) over each control volume, we get:

u/ V m, Uy - V(pw,,) dz
Q
= u/ div g, up, div(pw,,) dx + u/ curlpg, uy, - curl(pw,) de + RE  (5.32)
Q Q

with R% which has the following structure:
p=n 3 [ X meii lwn)i (V6w dofe), (5.33
0€En int © 7 1<i,5,k<3
where for ¢ € &y and 1 < 4,5,k < 3, nes 5k is a component of the unit normal vector to o.

Injecting (5.32) in (5.31) we get:

~ [ Peson) (e )  (T1e, )+ Ve, v, do
Q
+ 2u+ )\)/ div g, wy, div(dw,,) de + p / curlpg, wy, - curl(pw,,) de
Q Q

- a/ prdivipw,)de+ R+ o (1) = / I (owy) de.  (5.34)
Q )

n——+oo

By Lemma 5.9 with ¢ = 2, we have:

|R5| < ha ||un||1,2,/v1n |V(¢wn)|Hl(Q) < ha Hwn”Wz,lj]" @ S hiig-
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The choice of w,, gives div(dw,,) = im, Tk(pn) ¢ + w, - Vo and curl(pw,,) = L(¢p) w,, where
L(¢) is a matrix with entries involving first order derivatives of ¢. Hence, reordering (5.34) we
have:

[ (@ Nivag, un = o) Tulon) 6 da+ B+ o (1)
Q

n—-+oo

= /('Pgn[)n) (Ilg, u,) @ (g, uy) : Ve, v, de — (20 + )\)/ divag, wy (w, - Vo) dz
Q Q

— i /chranun - (L(¢) wy) dx + a/ﬂp;; wy, - Vo de + /Q f(owy) dz, (5.35)
with
N = /Q (2 + A) divag, wn — ap))) (im, Te(pn) — Ti(pn)) ¢ de.

Since (divag, Un)nen is bounded in L2(2) and (p]))nen in L1F7(€2), estimate (5.27) (with H'T" > 2)
yields R} — 0 as n — +o00. Moreover, we know that diva, wn, curlpg, wy, (resp. p)) weakly
converge in L2(Q2) (resp. in L'*7(Q)) respectively towards divu, curlu and p7. Since w,, strongly
converges in L9(Q) towards w for all ¢ € (1,400), we get, passing to the limit n — 400 in (5.35):

lim ((2p + N)divam, wy — apy)) Ti(pn) ¢ da

n—-+00 Q

= lim (Pe,, pn) (g, uy) @ (I, uy) : Ve, v, dx

n——+00 Q

—(2u—|—/\)/Qdivu('w~V¢) d:c—,u/ﬂcurlu-(L(qS)w) dax

+a/9p*vw-v¢dm+/ﬂf-(¢w) dz. (5.36)

Let us now determine the limit of the convective term in the right hand side of (5.36). As
in the continuous case, we introduce a mollifying sequence (ws)s>o and the regularized velocities
Ups = Up * Ws and us = u * ws where u, and u have been extended by 0 outside 2. We
have w, s € L5(Q) with [unsllye@) < Cllunllpeq) and for ¢ € (6,+0c], uns € LI(Q2) with
ln,s La@) < Csllun|gs(q)- Moreover, for all m € N and ¢ € [1,+00], un,s € W™I(2) with
[Un,slywm.a < Csllwnllysq)- Furthermore, we recall that

Ups — U strongly in L (R®) Vg € [1,6) uniformly in 4, (5.37)
n—-+0o0
Uns 2 Un strongly in L{ (R?®) Vg € [1,6) (uniformly in n), (5.38)
—
us — u strongly in LY (R?). (5.39)
6—0
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Denoting w5 = I, Un,5, we have:
[ Peon) (e ) (e, )+ Ve, v, da
Q

- / (Pe, pn) (e, i ) @ (g, w) : Vi, 0 da + RIS (5.40)
Q
with
RS == [ (Pe,pu) (He, s — (e, 0,0)) @ (1le, ) : Vi, 0, da
Q
Since (ppun)nen is bounded in LP(Q) for some p > £, (Vwy,)nen is bounded in L*(Q)? for any

s € (1,400), then the following inequality holds, for some triple (p, g, s), such that p > g, s> 1,
q<6and%+é+%:1:

RE] < Nowttally o1V e, 0l e ITe, 2y — T, i

S ||pnun||Lp(Q) [Vwn,| Ls(Q)3 e, wn — an'&nﬁ”Lq(Q)

N ”Hﬁnun - HSnﬁn,é”Lq(Q)
S llun — ﬁnﬁ”Lq(Q)
S (”“n - un,EHLq(Q) + | tn,s — un75||Lq(Q))
where the constants involved in these inequalities are independent of n and §. From Lemma 5.5 we
have:
s — tnsllgogey S W2 ltmshwa) S Csh2luallyey S Csh.
Therefore:

limsup |R2°| < lim sup ||u,, — Un sl La ) (5.41)
n—-+4oo n—-+oo

where the involved constant is independent of n and §. Let us now deal with the integral in the
right hand side of (5.40). Performing a discrete integration by parts we get:

_ / (Pe. pu) (Te. in ) @ (s wn) : Vi, vy da
Q

= - Z |0|pa (ﬁn,é)a‘@ua : (UL*'UK)@"'K,U
Uegn,int
o=K|L

- Z lo| po (4o - nK,U) ((&n,ts)a “(vp —vk))
0€En, int
o=K|L

Z ( Z |0|P0(ua'nK,o)('&n,5)g)"UK.

KeM, oe&(K)

Injecting (@n,5)e = (Un,6)o — (Un,6)k + (n,s) K, where (U, )k is the mean value of the function
u, s over K, we get:

- / (P, pn) (e, i g) © (e, ) : Ve, 0, d
Q

= > (D 10100 (o ko) ((@n0)s — (@no)) ) vk + RES+ B (5.42)
KeM, oc&(K)
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where, using the discrete mass conservation equation (3.4a), we have:

) )
Ry = —h Y Kok — 0) (@) - vk,
KeM,

n g ~
RO=ne S (1ol (1) ok gl (o ) (i
KeM, o€&(K)NEn int 7
oc=K|L
Since (pp)nen is bounded in L2 (Q), (vn)neN is bounded in L*° () and
I

where the involved constants are independent of n and 9, we obtain that:

<1

5
| R

— 0 as n — +oo uniformly with respect to 6 > 0. (5.43)

Reordering the sum in R?"S we get:

RO = e 3 ol (1)

0€En, int
oc=K|L

n,0
+ R7,2>

(pK - pL) ((ﬁn,d)L UL — (i"mé)K : vK)

n,0
=Rz}

)

where

" ol \# I 5 3
R = —h Z |o| ( ] ) "ok — ool (px — pL) vL - ((Bns)L — (Tns) k),

Uegn int |DG ‘
o=K|L
n,0 |0| ~
RyS =-n$ Y '“'(mQ ok = p2l7 " (px — pr) (fns) i - (V1 — vx0).
Uegn.int 7
oc=K|L

The first term is controlled as follows:

1
k) g n g - -
B < b ol D2 Dol (b lose — pul) " 12 (G )s — ()i
0E€En, int |D | |DU‘
G:K|L

+n L .
B Ve o ooy (30 1001 (120) 7 s — o) )

0€En int | U‘
o=K|L

where, following similar steps as in the proof of Proposition 5.2 (see the calculation after eq. (5.12)),
we have:

5 N 14+n N N 1+n N ~ 1+n
(@)L — (ns)x| " S |(Wns)r — (Uns)e] " + |(@ns)k — (Bns)o|
1+77 1+n
h;" Lin hy'
S —— ||Vty,s] —‘r Vi, s .
|L| [V, H s |K\ V@, || s
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By the regularity of the sequence of discretizations, we get:

RS 1S Ve, () 7 ooy ns vt u,

1
SNV e (o) ooy [ton | o220
1

S Csh? (Ve (pn) L1+7(Q) ||un||L6(Q)
1
S Cshi [V e, (o) |7 | sm )

where the constants involved in < are independent of n (and §). By the uniform estimate (5.4) we

have L (s )
— 175 (St a7 (755 +€3
14n S hn e

1 1
Ve, (pr) 7 [[pasn() = 1 Ve (oa)] 7
L 7 (Q)

Therefore
2~ or (155 +€3))

_n_
IR < Cshi ¢

which yields, with condition (3.21):

|R?”f| — 0 asn — oo for any fixed § > 0. (5.44)

The second term is controlled in a similar way:

5 < rels o] 5 o]
B < B T slmey D Dol (5 lox = pul) o (wr —vi)
0EEn, int 7 ‘ Ul
o=K|L

< B3t s

1
|L°°(Q) Ve, (o)l ||L1+n(Q) ||V£n”nHL$(Q)

. 1
S h7£12||un,5“L°°(Q) 1IVe, (pn)]7 ||L1+n(Q) ||vn||1,$,M

n

1

S h%”'{‘nﬁ |L<>O(Q) Ve, (Pn)”;HTn(Q) |wnlwl,ﬂ%(ﬂ)
_n_ __5 (.3

5 h71L+T/ (52 471F(1+n +E3))||ﬁn,5||Lw(Q)7

< it G ()
where the involved constants are independent of n (and ¢§). Using again (3.21), this implies that

|R?§| —0 asn — oo for any fixed § > 0. (5.45)

Let Q,, 5 and IIrq, v, be the functions defined by:

Qn,zS(m) = Z %( Z |0| Po (ua 'nK,a) ((ﬁ'n,é)ﬂ - (ﬁn,J)K))XK(m)v

KeM, ce&(K)

I, v (x) = Z vg Xk (x),
KeMy,
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so that, back to (5.42), we have :

- / (Pe, pr) (e, itn 5) @ (e, wn) : Ve, vy d
Q
— / Qs T, v, da + Ry + Ry + RYy. (5.46)
Q

Let us prove that, for a fixed § > 0, Q,, 5 weakly converges (up to a subsequence) in L"(€2) for some
r > 1 towards p(u - V)us as n — +00. The sum in Q,, 5(x) can be rearranged as follows:

Qi@ = Y 1 (ﬂ;’ ((B05)o — (.5)ic) (1 - s ) X (2)
0€En int
o=K|L

+ m ((@n5)0 = (@n,s)L) (U0 'nL,a)XL(“:))

Proceeding as above for the control of |(ﬁn,5) K — (’ljbnyg)a}(i, and invoking once again the following
estimates

Han,5||176,/\4n S |un,5|wl=6(9) S C5||un||L6(Q) < 05”“71”1,2,/\/1"7

combined with the estimates on Pg, p,, in L3071 (Q), Tg, u,, in L(R), we can prove that (Q,, 5)nen
is bounded in L"(2) with r > 1 (because 3(y — 1) > 2). Then, up to a subsequence, Q,, ; weakly
converges towards some Qs in L"(2) as n — +oo.

Let us now identify Q. Let 1 € C2°(Q)? and denote v,, = Irq, 1. Since 1) is smooth, we have

g, b, — % in L7 (Q) (with L + L = 1). Hence we have (observing that RY® =0 and R — 0
as n — +oo with 1, instead of v, ):

/Qé-wdx: lim /Qné'HMn¢nd$
Q n——+oo O ’

= lim - / (Pgnpn) (Hgn’fl,n’g) X (Hgnun) : Vgn’l/Jn dx.
Q

n—-+oo

Since @, s converges strongly as n — +0o to us in LI(Q) for all ¢ < 6 (uniformly with respect to
6) and [[wns(l; 5 p, < Csllunlly 2 0, we can reproduce the same arguments as those used in the
previous Subsection 5.2 (passing to the limit in the momentum equation) and obtain:

/Q5~1,1Jd:v:—/,ou§®u:V'z,bd:c:—/u5®(pu):Vi,bdw.
Q Q Q

Since the limit functions satisfy (p,w) € L30=1(Q) x H(Q) and since we have already proved that
div(pu) = 0 in Section 5.1, we infer that:

Q; = p(u- V)us.
Back to (5.40) and (5.46) we get :

— / (Pe, pn) Mg, wy) @ (g, wy) : Vg, v, de +/ pu®u: V(pw) de
Q Q
= R’ + Ry + Ry + Ry + Ry’ + RS (5.47)
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where

R = /Q Qo Maa, e~ [ Q- (6w) da.

RS = /Qp(u —us) @u: V(pw) dz.

The function IIxq, v, converges to ¢pw strongly in Lrl(Q) as n — 4o00. Indeed, we know that in
L™ (Q), ow, — ¢ow and 4, = v, — ¢w,, — 0 as n — 400 and we also have IIpq, v, — v, — 0 in
L™ (Q) since:

/

Maton=vali = 3 [ | X (00— vaieoo)| do

KeM, 'K o,0'€E(K)

r’ 3—r/ r’
fshn Z hK Z |vo_vo" .

KeM, o,0'€E(K)

~ ~

Therefore, by the weak convergence of Q,, 5 towards Q; in L"(£2) we have:

Hence we have [[IIrg, vn — vallp ) S hnllvnlly g, S Bnllvnllypn, S haléwnlwr @) S ha-

|R§"5| —0 asn — 4oo for any fixed § > 0. (5.48)

Combining the estimates (5.41)-(5.43)-(5.44)-(5.45)-(5.48) and passing to limit n — +oo in
(5.47), we obtain that:

n——+oo

lim sup ‘ / (Pe, pn) Mg, uy) @ (g, wy) : Ve, v, de — / pu®u: V(pw) de
Q Q
Slimsup [[w, = wnslleq) + RS, (5.49)
n—-4o0o

for some ¢ € [1,6) and for all § > 0. By (5.39) we have RJ — 0 as § — 0 and by the uniform in n
convergence (5.38) we finally obtain, letting 6 — 0 in (5.49) that:

lim (Pe,, pn) g, uy) @ (g, wy) : Ve, v, de = / pu®u: V(ow) de.
Q

n—+oo Jo
Going back to (5.36) we obtain:
lim ((2u + N)divm, wy — ap))) Ti(pn) ¢ de
n—-+oo Q
= / pu @ u: V(opw) de — (2,u+)\)/ divu (w - Vo) de
Q Q

—u/chrlu~(L(¢))w) d:c—|—a/ﬂp7’7w-V¢ dw—|—/Qf~(¢'w) dx. (5.50)
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Applying the identity (2.19) to the functions u and ¢w € H(Q), we get:

lim (2 + N)diva, wn — apl) Ti(pn) ¢ dx

n—-+o0o Q

:/ ((2u+>\)divufap77)Tk(p)¢dm+/pu®u:V(¢w) dx
Q Q
f,u/ Vu: V(pw) de — (,u+)\)/ divu div(¢w) dx
Q Q
+a/ﬂp7”/div(¢w) d:c+/ﬂf~(¢'w) de.

We have already proved that the limit triple (p,u,p7) € L30=1D(Q) x H{(Q) x L*5 satisfies
the momentum equation in the weak sense. Thus, applying Proposition 5.4 to v = ¢w (using the
density of C2°(Q)3 in W 4(Q) for all ¢ € [1, +00)) yields

liIJIrl ((2p+ N diva, wn — ap) Te(pn) ¢ dae = / (2 + A) divu — ap?) Ty(p) ¢ de,

thus concluding the proof of Lemma 5.7. O

5.3.2 Strong convergence of the density and renormalization property

Properties of the truncation operators Tj. We first state two results that are the discrete
counterparts of Lemmas 2.10-2.11.

Lemma 5.10. There exists a constant C such that the following inequality holds for all 1 < q <
3(y—1), n €N and k € N*:

1 _1
ITe00) = pllgocery + ITk(0) = ooy + ITk(on) = pullpagy < CRTE 5,

Consequently, as k — +oo, the sequences (Tx(p))ken+ and (Tk(p))ren+ both converge strongly to p
in LI(Q) for all ¢ € [1,3(y — 1)).

Proof. The proof is similar to that of Lemma 2.10 in the continuous case. It relies on the fact that
Jo pn = |Q]p* and on the uniform bound on ([|pnllys¢-1) (q))nen: O

Lemma 5.11. There exists a constant C' such that the following estimate holds:

sup. 1imsup | 7i(pn) — Ti(p)llp i1 0y < C- (5.51)

k>1 mn—+oo

Proof. Here again, the proof is similar to that of Lemma 2.11 in the continuous case. It relies on
the convergence of the effective viscous flux obtained in Proposition 5.7 and on the uniform bound

on ([[diva, ttal;2 (0 ner- 0
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Renormalization equation associated with Ty. We first state a discrete renormalization
property for truncated functions which is an analogous of the renormalization property stated in
Remark 2.4. The proof is similar to that of Prop. 4.8 which is given in Appendix A.1.

Proposition 5.12. For any b € C*([0,+00)), denote by the truncated function such that

) b(t) ift < M,
bM(t)_{b(M) ift> M,

and by, its discontinuous derivative:

oarl (1) = { A,

Let D = (M, E) be a staggered discretization of Q. If (p,w) € La () x Hay,0() satisfy the discrete
mass balance (3.4a) with p > 0 a.e. in Q (ie. px >0, VK € M) then we have:

div(bar(p)u) o + (bum]' (px)px — b (pr))div(u)x + Rje + Ry + R =0 VK e M, (5.52)

where .
le(b]\/j(,D)u)K = ﬁ Z |0—| bM(pa)ua ‘NK o,
ce&(K)
and
1
RL = T4l Z lo|rk.o (Ue - nK,s) and rio = [buly(pr)(pe — pr) + br(pr) — bar(ps),
c€e&(K)
2 _ 1& / 1 |J| % 1_q
Ry = hjy [bM]+(PK)® > ol (\D |) lpx = prl" ™ (px — pr),

c€e&(K)
R = hSy[bu'y (o) (pxc — p*).-

Now, for any k € N* we consider the function Lj introduced in Section 2 and defined as

Lu(t) = t(lnt —Ink — 1), if t €[0,k),
MU g, if ¢ € [k, +00).

We recall that Ly, € C°([0, +00)) N C((0,4+00)) and
tLy(t) — Li(t) = Te(t) Vt € [0, +00).

Proposition 5.13. Under the assumptions of Theorem 3.1, let (p,u) € L30~D(Q) x H(Q) be the
limit couple of the sequence (pp,Un)nen. Then, for all k € N*, the following inequalities hold:

div g, (L (pn)wn) + Ti(pn)divag, w, + Ry, = 0, in D'(R®), V¥n e N. (5.53)
div(Ly(p)u) + Ti(p)divu > 0 in D'(R?), (5.54)

where the discrete function R, satisfies: / R, > 0.
Q
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Proof. To prove (5.53), we apply Proposition 4.8 (completed by Remark 4.3) with the function
= L, which is a convex function satisfying |L}(¢)| < C|lnt| for t < 1. We straightforwardly
obtain (5.53).

Let M € N*. Applying Proposition 5.12 to the function Th;(¢) (i.e. Ths = by with b = Id) we
obtain:

div(Tar (p)w) . + ([Tu]y (px)px — Tar(pi)) div(u) i + Rje + R + Ry =0, VK € M.

Let ¢ € C°(Q) with ¢ > 0. For n € N define ¢,, € Ly, (2) by ¢ = ¢k the mean value of ¢
over K, for K € M,,. Multiplying the above identify by |K|¢x and summing over K € M,, yields:

Z Z |0|TM po uo nKa)¢K

KeM, cc&(K)

+ Z TM PK PK — TM(pK))(,ﬁ ( Z |0|ug~nK70>+R?+RS+REL:0
KeM, ocE(K)

with

Z Z |o| ([TM};(PK)(PU — i)+ Ta(px) — TM(po’))(u(T ‘NK.o)PK,

KeM, ce&(K)

1
g n 1_
s=1 S Wl 3 lol (150 51 (ke — p),
KeM,, ceE(K) 7
Ry =h5 Y KTy (px)dx (o — p¥)-
KeM,,

Since the function T, is concave and p, is the upwind value of the density at the face o with
respect to u, - Nk, we have R} < 0. The second remainder term can be rearranged as follows:

s Y ol (L)

0€En, int
oc=K|L

_ pn n
=Ry, + Ry,

ok — o) (Tu]y (px)dx — [Taa]y (pL)BL),

where

2 =08 Y ol (A75) ok = ol ok — o) (ol (o) — [Tl o) 6.

0€En, int ‘Dal
o=K|L
. lo| \ = 1_
205 3 1ol (50) o ) (Dl ) o~ 00).
0E€ER int 7
o=K|L

Since T}y is concave, we have Ry ; < 0. Hence we get:

S0 lolTu(pe) (o ko) bx

KeM, cc&(K)

+ 3 (Tl (px)px — Tar(px)) ok ( 3 |a|ug~nK70)+R;,2+Rgzo. (5.55)
KeM, oCE(K)
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We want to pass to the limit n — +oo in (5.55). To that end, we show that the remainder terms
R 5 and R% converge to 0 as n — +o00. Observing that for all K € M,,, |[Ta] (px)| < 1, and
since ¢ is a smooth function, we get:

1

o n 1
Bl <h& Y 1ol (A2h) " ow = pul? lox — o)

0€En int |DG|
o=K|L
< pé2 |0| W 1
SHEIVOleie) X0 1Dl (5 7) " oxe = ol
0EER int 7
oc=K|L

1
S 02 IVl oy Ve, (00) 7 [l 0y-

Since 1 4+ n > 1, Holder’s inequality yields

<hn = (E%L%(%,,Jr&))'

1 3
196, (on)l sy < COMITe (s

Therefore
(b2—gor (135 +€3))

/.
|RS 5| S ha™” — 0 asn — +oo.

For Ry we may write:

RS S B 10wy D IKllox = 0| S 2190 0" 18]l o) 2
KeM,

so that R} — 0 as n — 4o00. Coming back to (5.55), it remains to pass to the limit n — +oo in
the two terms

SN o Tu(pe) (e - nic o)k

KeM,, ce&(K)

and Z ([TM];(PK)PK—TM(PK))¢K< Z |0|ug-n1<,a).

KeM, ce&(K)
On the one hand, we have by a discrete integration by parts
S 3 lolTuleo) e mica)on == [ (Pe,Tarlpa)) (e, un) - Ve, 6n da
KeM,, oc&(K) 2

Then, using the same arguments as those to pass to the limit in the discrete weak formulation of
the mass equation (see the proof of Proposition 5.2 and replace p,, by Tas(pn) which converges to
T (p) in L (Q) weak-* topology), we deduce that

i YYD |0\TM(pU)(uU-nK7U)¢K:—/QTM(p) w- Vo dz.

n——+o0o
KeM, ce&(K)

This is possible because (Ths(pn))nen is bounded in L>®(Q) (while (p,,)nen is bounded in L3(—1
with 3(y —1) € (2, 6] since v € (2,3]) and a “weak BV estimate” is available for Th(p,) thanks to
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the following inequality (recall that |Tas(r1) — Tar(r2)| < |r1 — rof for all 1,79 > 0):

Y 1ol (Tu(pr) = Tarpw))* o - iol < Y ol (pr — px)* Jte - oo,

0€Eins 0€E&int
o=K|L oc=K|L

On the other hand, we have:

Z ([TM]/—&-(/)K)/OK - TM(pK)) (bK( Z lo| us -nKJ)

KeM, oc€E(K)

= /Q ([TM];(pn)pn - TM(pn)) div g, un ¢ de.

Hence, passing to the limit n — +oo in (5.55) we obtain:

div(Ta (p)u) + [p[Tn) (p) — T (p)]divasuw >0 in D'(R?) (5.56)

which corresponds to a relaxed version of Equation (2.36) from Section 2. For k € N* and 6 > 0,
we introduce the regularized function Ly s defined as Ly 5(t) = Ly (¢ + 9), the derivative of which
is bounded close to 0 unlike Ly. Applying Lemma 2.1 (and the second part of Remark 2.4) to the
pair (Ta(p),w) (justified since T (p) € L=(Q2) for M fixed) with the function Ly s and the source

term g = — [p[Twm]) (p) — T (p)]divagu € L (R?), we get:

diV(Lkﬁ (TM(p))u) + Tk75 (TM(p))divu
> =L, s(Tv(p)) [p[Tar)y (p) — Tar(p)]divaqu in D'(R?)  (5.57)

where T}, 5(t) = tLj, 5(t) — Lk,s(t). Now, exactly as in the continuous case, we pass to the limits
M — +o00 and then § — 0% (see the proof of Prop. 2.12) to get inequality (5.54). O

Strong convergence of the density

Proposition 5.14. Under the assumptions of Theorem 3.1, let (p,u) € L3O~ (Q) x HE(Q) be the
limit couple of the sequence (pn,Un)nen. Up to extraction, the sequence (ppn)nen strongly converges
towards p in LI(Q) for all g € [1,3(y —1)).

Proof. Integrating inequalities (5.53) and (5.54) and summing, one obtains:

/ T (o) div a, A — / Ti(p)divude <0,  VneN. (5.58)
Q Q
Since, [Tk (r1) — T (r2)|" T < (r] — 73)(Tk(r1) — Tk (r2)), for all 1, ro > 0, we have

limsup/Q Tk (pn) — Tr(p)" T da < limsup/ﬂ(pz — " (Tk(pn) — Tr(p)) dx

n—-+oo n—-+o0o

< / (0" T(p) — 7 Ti(p)) dee + / (P7 = 0") (T (p) — Tic(p)) .
Q Q
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Invoking the convexity of the functions ¢ — t7 and ¢t — —T}(t), we have p7 > p7 and Ty (p) < Tk (p)
so that

iimsup [ [Ti(p) = o) da < | (FTLG) 7 Tilp) de.

n—-+o0o

We can now use the weak compactness property satisfied by the effective viscous flux (Prop. 5.7):

lim sup/ Tk (pn) — T(p) "' dz
Q

n——+oo

2 A
< T limsup/ (Tk(pn) — Ti(p))div g, up dz
Q

a n—+00

2 _
- ,U'f')\/(Tk(P)—Tk(p))divudw—f—limsup(/ Tk(ﬂn)dianundw—/Tk(p)divudw)
@ Q2 n—-+oo Q Q
< 2M+A/(Tk(P)—m)divudx,
a Q

thanks to (5.58). The end of the proof is the same as that of Proposition 2.13: thanks to the
previous inequality we show that

lim limsup/ |Tx(pn) — Ti(p)|** dae = 0,
Q

k—+00 n— oo

and thus ) )
lim limsup ||Tx(pn) — Tk(p)”Ll(Q) =0.

k—+00 n—s+oco

We conclude to the strong convergence of the density by passing to the limits n — +o00, k — 400
in the following inequality

1o = pullii) < lon = Tilpn)lln ) + 1Tk (pn) = Te(P)lILi (o) + 1Tk(0) = PliLy (-
@ @

A Proof of some technical lemmas

A.1 The discrete renormalization property

Proposition A.1 (Discrete renormalization property). Let D = (M, &) be a staggered discretiza-
tion of Q. Let (p,u) € La(Q2) x Hpg,0(Q2) satisfy the discrete mass balance (3.4a). We have p > 0
a.e. inQ (ie. pxg >0, VK € M). Then, for any b € C'([0,+00)):

div(b(p)u) . + (V' (px)px — b(px))div(u)k + R + Ry + Rk =0 VK € M, (A1)
where )
dlv(b(p)u)K = m Z |U| b(pa)ua ‘MK o,
ceé(K)
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and

1
Ric = K| > ok (Uo - nko) and rie =V (pK)(ps — pr) + blpK) — b(ps),
ce&(K)
1 lo] \ % 1
R% = h% V (px)— — o7 (o —
=15 Vo) 20 ol (7,7) " lew = pul i oxe = ),

c€e&(K)
R = W5yt (px) (pxc — p*).

Multiplying by | K| and summing over K € M, it holds

/ (' (p)p — b(p))divag udx + Ry + RE + R =0, (A.2)
Q
with
Ré = Z o|(rx,o —7L0) (Uo " MK ,0),
g€&int
o=K|L
1
o n 1_
Re =15 > || (]|3||) lpxe = prln ™" (pxc = pr) (V' (pxc) = ¥ (pr)),
SR
R =05 > 1K (px) (pxc — p%).-
Kem

Moreover, if b is convex then Ré’Z >0 and Rf’w > 0.

Proof. Multiplying by b'(px )Xk the discrete mass conservation equation (3.4a) (together with the
definition (3.6)), one gets

1 *
Vo) (g > Jolpoto - ni.o + B (oK) (px — p*)
oc€&E(K)
&2 1/ 1 |U| %’ |
+ 50 (px) T Z \U|( ) px —prl" (px —pr) = 0.
|K| 0€Eint ‘DU|
o=K|L
and then
1 1
m Z lob(ps)Us - MK o + ﬁ Z |U|(bI(PK)PK - b(PK))ucr "MK,o
cEE(K) oc€&(K)
1
+ — Z |U|TK,UUU ‘ nK,U
|K| oc€E(K)
e o) 3 1ol (1) ok = ol ok — )
WPy 22 17D,
oc=K|L

+ 5y (px) (px — p*) =0
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with

0 = (pK)(po = pr) + b(px) = b(po),
which corresponds to Equation (A.1). Multiplying by |K|, summing over K rearranging the sums,
and using the discrete homogeneous Dirichlet boundary condition on the velocity, we get (A.2).

Let us assume from now on that b is convex, First, we have rx , = 0 when u, - ng , > 0 (since
then p, = pk) and, when u, - ng,, <0, we have rg , < 0 since b is convex. Hence Ré > 0.
Since b is convex, we also deduce that

1

g n 1_
R =h5 ) lol %')"Ipx—pw "(oxc = pL) (¥ (pxc) = ' (p1)) = 0.
0€Eint 7
oc=K|L

Finally for the last remainder term R3,, we combine the convexity of b with a Taylor expansion
and then use Jensen’s inequality (recalling that ).\, [K|px = [©2]p*) to get:

R =15 3 1K1 0lr) ~ 00D = 15190 (i [ w0)ae (g [ pae)) 0.

KeM

A.2 Estimate on the momentum convection term

Lemma A.2. Let D = (M,&) be a staggered discretization of Q0 in the sense of Definition 3.1,
such that O < 6y. Define

Reonv(p, u,v) = / dive(pu @ u) - Hgvde + / (Pep)(Ilgu) @ (lgu) : Vevde.
Q Q

with the operators Vg, Pe and llg defined in (4.5), (4.8) and (4.4). Assume haq < 1. Then, there
exists C = C(Q,~,T,0) such that for all (p,u,v) € Ly () x Ha(Q) x Hag(Q):

3=k (rtes) e oyt 2
|Rconv<Pvua”)’ <Chy, [h%2p HL1+”(Q)HUH1,2,M ||v||1’2’M (A.3)

I e e R L
+ChM ' IF(HI )||h§SPFHE1F+n(Q)||“||1,2,M HUHLQ,M'

Proof. By definition, recalling that a @ b:c®d = (a-c) (b-d) for a,b,c,d € R?, we have:

(v — vK)).

o]
|Ds |

/(ng)(ng) ® (Heu) : Vevdx = Z | Dol po (Uo - MK o) Up - (
Q e

SR
Reordering the sum and using the definition of the primal fluxes (3.6) we get:

f/Q(ng)(ngu)@@(ngu) Vevdz = Y vk > ol po (e nk o) uo

KeM c€E(K)

= Z V- Z Fro(p,u)us + Ry

KeM ce&(K)
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where

o]
Ri=—h 3 e > 1ol (i ‘) ok — pr)u
KeM ce&(K) 7
oc=K|L

By assumption (H2) (conservativity of the dual fluxes) we may write :
- / (Pep)(llgu) @ (gu) : Vevdx
Q

= > vk Y Frolpu)us+ R

KeM ce&(K)
= > wg- Y, (FKU pu)us+ Y Fedpu) ue) + Ry
KeM c€e&(K) e€é(D,),eCK

Writing vy = v, + Vg — v, We get:

- /Q(ng)(ﬂgu) ® (Ilgu) : Vevde

Z Z (P (FKO' pu ) Uy + Z Fo,e(pv u) ue) +R1 +R27 (A4)

KeMoc&(K ec€(D,),eCK
with
=> > (vk —v,) (FK,U(/)7 wu,+ Y. Fedpu) us>-
KeMoe&(K) ec€(D,),eCK
By conservativity of the primal fluxes (i.e. using F o (p,u) = —F L »(p,u) for o = K|L) we see

that the first term in the right hand side of (A.4) is equal to [, dive(pu ® u) - g dz. Hence:
‘ / dive(pu © u) - Mevde + / (Pep)(ew) ® (lgu) : Vev dw‘ < |Ri| + |Rs).
Q Q

Proving Lemma A.2 amounts to bounding |R;| and |Rz|. We begin with |R;|. Reordering the sum
in Ry we, get for C' = (Q,~,T,6)p):

> o] 1
mi=15| 3 1ol ()’ (o — o) s (v — 1)
0€&int
a:eK\L
e ; El
2=
< OB ol ( 3 |Dg||ua|6> ( S 1D, (|D o —m) )
o€Eint 0EEint
2=
<OhS, o el o) Vel o,
Eo—1
< Chy % (Q) ||u||1 2,M ||V£’U|| S
fo—L— ot
< Chyy T ||P HL1+n(Q) ||u||1727M ||V$U||L2(Q)3

< Chf\i_%_i(un"'{?’) ||h§3
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Let us now turn to Rp. Recalling that u, = u, + %(u,,/ — u,) and using (H1), we write
Ry = R271 + R2)2 with:

Ro1 :% Z Z (v —v,) - ( Z Fy(p,u) (uy — ug)),

KeMoeE(K) e€€(Do),
eCK, e=D,|D/,

Rop= > Y UK—’UU'UUE?(( > Frolpu )

KeMoe&(K) o’'€E(K)

The assumption (H3) yields, for C = C(£, 6):

Sotl—o
Foclpw)] < C (g e i )
Eot1—
< (oo Il Pt i+ ey Br 7 )

Since vk is a convex combination of (vs)see(k):

‘ Z (VK —vo)- ( Z Foe(p,u) (ugr — ua)))
ce&(K) ceé(D.),
eCK, e=D,|D.,

Ea+1-
< O (ol oy llay o+ ol 155 7) 30 A oo v ko —

ag, 0'
- ,,O'HIEE( )

and, for o, o’ € £(K), the quantity |u, — u,/| (or |v, —v,|) appears in the sum a finite number of
times which depends on the number of faces of K. Hence, applying the Cauchy-Schwarz inequality
and Lemma 4.4, we may write

Eat1-
(Ba1] < € (Il oy llgoeay hina + 10l Bt ) el e ol e "
La1-1 ’
< O (Il o llgoeiy ine + 19l ey Bcr ) Nl g 0l 5,0

We then get, for C = C(2,~,T,0y):
—a_ 21 'rl+£
|R21| < Ch F(H 3)Hh P ||L1+71(Q)||u||1,2,/v1 H'U”LQ,M

eat1-1— o (7 +6s) |

+ Chyy |h P HL1+u Q)”u”l,z,M ||'U||1,2,M'

The estimation of R; 2 follows similar steps. Indeed by definition of v, we have

Z 5?{ (’UK*’UU):O,

ce&(K)
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and we obtain that:

Raz= Y > (0 —v0) &k (ur—ux) | Y. Frolpu),

KeM oe&(K) o' €E(K)

S0, once again, denoting ux = Zo_eg(K) % Ug:

5 £+1-1
[Ra,2l < C (1ol oy el ey hat + 1ol iy B ") D0 hie 3 [vg = vl g — ux
KeM c€E(K)

1
T 2
||h§\ipr||fl+,,,(m | |1,2,M ||U||1,2,M

1
T

Eatl—g— o (75 +€s
Ton (H" ) L1+77(Q)||u||1727M HUHLZ’M’

+C hyy ’ v

B A topological degree result

The following theorem follows from standard arguments of the topological degree theory (see [6] for
an overview of theory and e.g. [10, 19, 32] for other uses in the same objective as here, namely the
proof of existence of a solution to a numerical scheme).

Theorem B.1. Let N and M be two positive integers and V = RN x RM. Let b€ V and f(-) and
F(-,+) be two continuous functions respectively from V and V x [0,1] to V. Assume that:

(Z) ]:(‘, 1) = f()’

(ii) ¥§ € [0,1], if an element v of O (the closure of O) is such that F(v,8) = b, then v € O, where
O 1is defined as follows:

O={(z,y) €V s.t. Co <z <Ci and |y|l,; < Ca}

where, for any real number ¢ and vector x, the notation x > ¢ means that each component of
x is larger than c; Cy, C1 and Cy being positive constants and ||y||,,; a norm defined on RM;

(iii) the topological degree of F(-,0) with respect to b and O is equal to dy # 0.

Then the topological degree of F(-,1) with respect to b and O is also equal to dy # 0; consequently,
there exists at least one solution v € O to the equation f(v) =b.

C Discrete functional analysis for non-conforming finite el-
ements
In this appendix, we prove that some important functional analysis results can be extended to

piecewise smooth functions obtained by non-conforming finite element approximations. We focus on
the Crouzeix-Raviart finite elements [5] but all the results can be extended to the Rannacher-Turek
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Figure 2: Notations for triangular meshes.

finite elements [37] which use the same degrees of freedom (except the approximation property
(C.16) which must be adapted, see [37]). We prove classical results such as a discrete inf-sup
property as well as well known approximation results. We also prove discrete Sobolev inequalities
as well as compactness results which are discrete counterparts to Rellich’s theorem. The proof of
these last properties are widely based on the work by R. Eymard, T. Gallouét, R. Herbin, and their
collaborators. We refer to the books [11, 8] and also to the appendix in [12] where similar results
are proven for finite volume schemes.

C.1 Meshes and discrete functions

Let Q be an open bounded connected subset of R?, d € {2,3}. We assume that € is polygonal if
d = 2 and polyhedral if d = 3. We define triangular meshes in the following way.

Definition C.1 (Triangular mesh (see Figure 2)). A triangulation (or triangular mesh) of 2 is
a finite family M composed of non empty simplices such that Q = Ugem K. For any simplex
K € M, let 0K = K \ K be the boundary of K, which is the union of cell faces. We denote by
E the set of faces of the mesh, and we suppose that two neighboring cells share a whole face: for
all o € &, either o C OQ or there exists (K,L) € M? with K # L such that K N L = &; we
denote in the latter case 0 = K|L. We denote by Eoxt and Eny the set of external and internal
faces: Eoxy = {0 € E,0 C N} and Eing = €\ Eext- For K € M, E(K) stands for the set of faces
of K. The unit vector normal to o € E(K) outward K is denoted by nk . In the following, the
notation |K| or |o| stands indifferently for the d-dimensional or the (d — 1)-dimensional measure
of the subset K of R% or o of R*~1 respectively.

Definition C.2 (Size of the discretization). Let M be a triangulation of Q. For every K € M, we
denote hy the diameter of K (i.e. the 1D measure of the largest line segment included in K) and
for every o € £, we denote h, the diameter of 0. The size of the discretization is defined by:

hym = max hg.
M KeM
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Definition C.3 (Regularity of the discretization). Let M be a triangulation of Q. For every
K € M, denote o the radius of the largest ball included in K. The regularity parameter of the
discretization is defined by:

h
9M:max{—K,KEM}. (C.1)

0K
Definition C.4. Let M be a triangulation of Q. We denote Ly(Q) the space of scalar functions
that are constant on each primal cell K € M. Forp € Lp(Q) and K € M, we denote px the
constant value of p on K. We denote Liag0(€2) the subspace of Ly () composed of zero average
functions over Q.

Let P (K) be the space of degree one polynomials defined over K:
Pi(K) = Span{l, 5, i = 1,..,d}.

Definition C.5. Let M be a triangulation of Q. We denote Hp((2) the space of functions u such
that g € P1(K) for all K € M and such that:

;/[u]a do(z) =0, Yo € Em, (C.2)

where [u]g is the jump of u through o which is defined on 0 = K|L by [ulo = ujp, —ux. We
define Hpaq0(2) C Ha(Q) the subspace of Haq(2) composed of functions u € Ha () such that
ﬁfguda(m) = 0 for all 0 € Eexi. Finally, we denote Hap(Q) := Hu(Q) and Hpo(Q) =

Ha,0()%

For a discrete field u € Haq(Q2) and o € &, the degree of freedom associated with o is given by:

1
Uy = m/ouda(w). (C.3)

Although u € H () is discontinuous across an internal face o € &y, the definition of wu, is
unambiguous thanks to (C.2).

Definition C.6 (Shape functions). Let M be a triangulation of Q. The shape function {, € Hp(Q)
associated with o € &, is the unique function in Ha(Q) satisfying for all o, o' € E:

1 1, ifo=o,
M/o-/gada(m){ O7 ifU/#U.
Then for all w € Ha ()

u:ZuaCU, where UHVL/UdU(m% Vo e €.

ce&

Observe that the support of a shape function {, € Hp(€) is included in the (at most) two
neighboring cells to o.

79



Definition C.7 (Discrete W14 semi-norm). Let M be a triangulation of . We define the piecewise
smooth gradient and divergence operators acting on discrete functions u € Hp(Q) :

V mu(z) = Z Vu(x)Xk(x), (C.4)
KeM

divapu(z) = Z div u(x) Xk (). (C.5)
KeM

For all scalar functions u € Hp(Q) and all 1 < q < 400, we define |[ull; , r, the discrete Wha

semi-norm of u by:
1

e ([ 19siraa)’ o

For all vector functions uw € Hx(R2) and all 1 < g < +o0, we define |lull, , o the discrete Wha
semi-norm of w by:

[[u

[

LgM= (/Q |VM“|qd$>%~ (C.7)

On the space Hpq,0(€2), the semi-norm ||. ||, is actually a norm. This is a consequence of
the discrete Poincaré inequality (see Proposition C.10).

C.2 Some classical properties of the Crouzeix-Raviart finite elements

We first recall the following classical result.

Lemma C.1. Let M be a triangulation of 2. Let K be the reference element which is the d-
simplex the vertices of which are ag = (0,..,0) and a; = (0,..,1,..0) where all the components are
zero except the i-th component which equals 1, fori=1,...d. For K € M, let Ak be the (unique)
affine mapping which maps the vertices of K onto those of K, and let By be its jacobian matriz
(which is constant over K ).

o We have the following estimate on By and its inverse:

. hk _ _ h
Bkl := sup [Bk Z|pe < —, 1B := sup |Bg' @|pa < —, (C.8)
#cRY Y zeR? 0K
|i‘Rd:1 |m|]Rd:1

where h and 0 only depend on d.

o Let K € M. With a function u defined on K, we associate a function 4 defined on K by
w(x) = u(x) where x = Ak (). Let E be either the simplex K or one of its edges o € E(K).
Then one has, for all ¢ € [1,+00):

BN
el = (:E:) ol 0 (©9)
BN
||Vu||Lq<E)S||BK1||(:E:) IVl (C.10)
A B\
Vilha) < 1861 ({51) IV ubhoge (C.11)
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We now state a result which can be obtained by easy adaptations of [39, Sections 3 and 4].
Lemma C.2. Let M be a triangulation of Q). Let K € M be a given simplex and o be one of its
edges. Then we have the following trace inequality: for all g € [1,+00):

o] \ s
ooy < (477) " Uliogae + A I9lla) Vo€ WH(R). (C12)

Moreover, we have the following local Poincaré-Wirtinger inequality. Denoting uy the mean value
of u over K:

lu—uclo ey < Cdig) hic [Vl ey V€ WH(K). (C.13)

Let us now define the following interpolation operator from H} () onto Hag,0(€2):

IMZ H(l)(Q) — HM,O(Q)

u oo Ivu=) (|01|/Uuda(:c)> Co (C.14)

o€eé
Naturally, for a vector field w € H§(Q) (= H§(Q2)9), Iymu € Hayo(R) is defined as follows:

nu=3 (% [uto@) <.

oce&

Proposition C.3 (Properties of operator In). Let M be a triangulation of Q0 such that Op < 09
(where O pq is defined by (C.1)) for some positive constant 6y. The operator Iy satisfies the following
properties. For all q € [1,400), there exists C = C(0o,q,d) such that:

(i) Stability:
Iaull gy < C lbygragays ¥ € WE9(Q). (C.15)

(i) Approzimation: For all K € M:

l[u— IMUHLQ(K) + hi |V (u— IMU)”Lq(K)
< Ch¥ lulwzaxy,  Yu€ W2(Q) N Wii(Q). (C.16)

(i4i) Preservation of the divergence:

/pdivM(IMu) dx = / pdivudz, Vp € Lpm(Q), u € Wé’q(Q). (C.17)
Q Q

Remark C.1. An operator which satisfies properties (1) and (iii) of the above proposition is called
a Fortin operator. The interested reader is referred to [21] for a similar result in the case of the
MAC scheme.
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Proof. We start with proving (C.15). Let u € W{%(Q). We have Iyu = Y ocs UsCs Where
Uy, = |o|7! J,udo(x). Since {, has it support in the neighboring cells K and L if 0 € Epy with
oc=K|L and in K if 0 € £y N E(K), we have:

Il? = S / IV (L) da

KeM

/ |V (Ipu —ug)|?de
KeM

> / —ug)Go)|'d

= x
KeM UES(K
q
Z / Z —ug| |VCU\) de. (C.18)
KeM oeE(K)

Applying Holder’s inequality, then the trace inequality (C.12) and finally the Poincaré-Wirtinger
inequality (C.13) we have:

1
‘ua _UK‘ < ‘ |1 ||’LL UK”L‘I(U)
g

d \i
< (1) o= xlhogaey + o 1V ullaac)

d\
< Clasd) e () 190l

Injecting in (C.18) we get:

[y s < Clacd) 3 |K| IVl [ (3 196]) e

KeM oEE(K)
S C,(qu) Z |K‘ HVUHLQ(K) Z ||VCU||%<1(K)
KeM ce&(K)

Now applying (C.10) to ¢, for all o € £(K) and observing that (, = (s with [V ¢ollg,q(z) Which
only depends on d, we get:

hq
Macll? o pg < C"(acd) S S Tul
Kem 9K

<C"(q,d) 05 D IVullfa
KeM

= C"(q,d) 6¢ |u\%v1,q(m.

We now give the proof of (C.16). Let u € W24(Q) N WH(Q) and let K € M. Denote
Iz e P(K <) the polynomial

Igi= > 5C, where a&:|c}|’1/ﬁda(§:).

5e€(K)
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Following the above lines, we can prove that for m = 0,1, the operator I is continuous from

Wm"’l’q(f() onto W™ q(f(), with an operator norm which only depends on K, q and m. Since
I;v = v for all polynomials v € P;(kK), the Bramble-Hilbert Lemma applies (see [4, Lemma 6])
and one has for all 0 < n <m with m =0, 1:

|’& - If(ﬂ|wnq(f{) S C(f(vq’m) ‘a|wm+1,q(f()-

Performing the change of variables @ = Ak () and observing that if I is the restriction of Iy to
K, then one has I'xu = I, we get:

|’LL - IK”'WW,(](K) S 0(007 d7 q,m, n) h$+1_n|u|wm+lyq([{)a

which straightforwardly yields (C.16).

Finally, we prove (C.17). Let p € La(£2) et w € Hpq0(€2). Denote px the constant value of p
on the simplex K.

/pdlvM(IMu )da = Z /ple Iyu)de = Z pK/ div(Ipu) de

KeM KeM
|U// udo(a:))g,/ N
a./

ZPKZ/IMunKJdU ZPKZ/Z

KeM  oeg(K) KeM  oec&(K)’7 o'cE

We know that / (o do(x) = 0|67, which yields:

/pleM Iyu)de = Z PK Z /u ng..do(x Z pK/ dlvuda:—/pdlvuda:

KeM  oe&(K) KeM

O

C.3 Discrete inf-sup property
We recall the following result (see [35]).

Lemma C.4. Let Q be a bounded Lipschitz domain of R, d > 1. Then, there exists a linear
operator B depending only on § with the following properties:

(i) For all g € (1,400),
B:LYQ) — Wy().

(ii) For all g € (1,+00) and p € LE(Q),
div(Bp) = p, a.e. in Q.
(iii) For all q € (1,+00), there exists C = C(q,9), such that for any p € LI(Q):

1Bplwr.ai) < ClpllLeo):-
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We now prove that the pair of discrete spaces (Lag,0(€2), Hat,0(£2)) satisfies a discrete version
of the above result. This is one of the main features of the Crouzeix-Raviart finite elements which
is often referred to as the discrete inf-sup property.

Lemma C.5 (Discrete L? inf-sup property). Let M be a triangulation of Q such that O, < 09
(where O is defined by (3.1)) for some positive constant 6y. Then, there exists a linear operator

BM : LM70(Q) — HM’()(Q)
depending only on ) and on the discretization such that the following properties hold:
(i) For allp € Lap (),

/rdivM(BMp)da::/rpdm, vr € Ly (Q).
Q Q

(ii) For all q € (1,400), there exists C = C(q,d,,00), such that

||BMP||1,q,M < C”pHLq(Q)'

Proof. Define By = In 0 B. For all p € Ly 0(€2), we have by (C.17) :

/Q r divad (Bagp) dw = /Q r div g (It (Bp)) de = /

rdiv(Bp))dx = / rpde, Vr € L ().
Q

Q

Moreover, for g € (1, +00), we directly obtain ||BMP||17Q7M < C(0o,q,d) |Bp|W1,q(Q) < C(b,q,d) x
C(q,9Q) [|Plle(), Where C(g,€2) is the constant given in Lemma C.4 and C(6o,q,d) the constant
given in Proposition C.3. O

C.4 Discrete Sobolev inequalities

The aim of this section is to prove a discrete equivalent of the following Sobolev continuous injection
result, the proof of which can be found for instance in [2].

Theorem C.6 (Sobolev, Gagliardo, Nirenberg). Let 1 < p < co.

e If1 <p<d, then there exists a constant C(p,d) such that:
[ullpps ey < C(p, d) [V ullLpgay, vu e WHP(RY), (C.19)
where p* = ddfpp In particular, the injection WHP(R?) € LP"(R?) is continuous.
e Ifp>d, then for all q € [p,00), there exists C(p,q,d) such that:
lullpagay < CP,a,d) | VUllgogay, — Yue WHP(RY). (C.20)

In particular, the injection WP (R?) C L4(RY) is continuous.
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We first prove a technical result which will be useful in the following.

Lemma C.7. Let M be a triangulation of Q such that Opg < 0y (where O is defined by (C.1))
for some positive constant 0y. For a function v defined on K for all K € M and for all o € &y
with o = K|L, we denote [v], = the jump of v across o ( i.e|[v],(x)| = |vx(x) — vL(x)], for all
x €0), and for o € Eext, 0 € K, we denote [v],(x) = vk (x), for all x € 0. Then, one has:

e For all 1 < p < oo, there exists a constant C = C(p,d,0y) such that :

(= %/ o] do(@))” < Cllell a0 € Hago(). (C.21)

ocek

e For all 1 < p < oo, there exists a constant C = C(p,d,0y) such that for all a > 1 :

(3 [ 10l do@) < aCllolita v Wl poaes Vo€ Haro®),  (C22)
oceE’ 7

wherel<p’<ooisgz'venby%Jr;:l.
Proof. We first prove (C.21). Since for all o € &, the integral of the jump of a function v € Hp,0(Q2)

across o is zero, then by the mean value theorem, there exists x, € o such that [v],(x,) = 0. We
then have:

1 p
Zhgl/UHUM do(x)

oce&

1 p
=2 /a [lo = v(@o)], [" do ()

oce&

1
=Y )

o€Eint
oc=K|L

+ Z hgl_l[T‘A1VU|K(mU+s(m—xU))-(:c—ma)ds

/0 (V’U‘K(wg +s(x —x,)) — Vv (2, + s(x — :1:0))> (x—=,)ds ’ do(x)

! do(x).

In the following, we denote Vv(z, s) instead of Vu(x, + s(x —x,)) to easy notation. The Cauchy-
Schwarz inequality in R? yields

Zh;l/g |[v]]” do(x) < Z f;pl/a|a:—:cg|p/ol (\VU|K(:B,S)|”+ |VU‘L(£IJ,S)‘p) dsdo(x)

oce& 0€E&int
o=K|L

1 1
+ Y F/ @ — wa|p/0 Vo (@, 5)|P ds do(z).
0C€Eexs 7 7
ce&(K)
Since h, = diam(o), we have |z — ,| < h, for all 0. By Fubini’s theorem, we obtain:

thlfl/}[v]gvda(w)SC’(p) >y ha/\Vv|K|pda(a:). (C.23)

oe& KeMoe&(K)
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By a finite dimension argument, there exists C/(d) such that for all polynomial function @ € P; (K):
/ Vil do(z) < C(d) / VilPd,
seE(R) K
Applying (C.10) and (C.11) to E = o € £(K), we see that there exists C(p, d, 6p) such that:
> ho [ IVl dot@) < Coud.00) [ Vol da
c€E(K) K

which combined with (C.23) proves (C.21).

Let us now prove (C.22). Since [v], () = 0, we have [|[v|*],(x,) = 0. In addition, since o > 1,
|v|* is smooth where v is smooth and one has V|11|0‘ = asgn(v)|v|* 1 Vv. Following similar steps
as those for the proof of (C.21), we find that:

Z/Hv\ | do(x) /|V‘v‘|}<|d0 )
o€l KEMUES(K)
Z Z heo a/\v|K|a_1\VU|K|dU(1:).

KeMoe&(K)

Applying Holder’s inequality to the integral over o, we obtain:

Sl do@ < 3 S heallolEta ) 19000,

oeg’ KeMoel(K)

Then, transporting this inequality to the reference element using (C.9) and (C.10), invoking a finite
dimension argument on the reference element and finally transporting back to the simplex K thanks
0 (C.9) and (C.11), we prove that (with % + ﬁ =1):

a1 |f<| lo|
hUaHUHLP’(a*l)(g) HVUHLT’(O') <o ‘A| |K| ” HLP "(a=1)(K) HVUHLP(K)'

The quantities \K | and |&| only depend on d and by the regularity of the mesh, there exists C'(6p)
such that h, ||;(|| < C(fp) which concludes the proof of (C.22). O

We now want to prove a discrete equivalent to inequality (C.19) for discrete functions u €
Hpt,0(92) considering the norm |[ull, , 1 instead of ||Vully,ga). We begin with the case p = 1.
Inequality (C.19) reads:

”uHLl*(]Rd) < C(d)HVUHLl(Rd)v Vu € WLl(Rd)« (C.24)

Let us first prove that this result extends to functions with bounded variations. For u € L(R9),
define:

lullgy = sup { (Va, $) 1, with ¢ € CZ (R 5.t ] e ey < 1}
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A function u € L (R?) is said to have bounded variations if ||u||z,, < co. The space of such functions
is denoted BV(R?). Let us prove that (C.24) holds true for functions in BV(R?) with ||u| gy, instead
of [Vully:gay. Forall u € BV(R?), there exists (see [1] for instance) a sequence (uy,)neny C L(R?)
such that u, — wu in L'(R%) and almost everywhere, and such that IVunllggay = lunllgy —
|lullgy- The sequence (||unHL1*(Rd))n€N is bounded and since u, — u a.e., Fatou’s lemma gives
[l gay < lnlgirgg [[tnllgix gay- Letting n — +oo in (C.24) written for u, we obtain:

letlle (ay < Tim inf flun i o)
< C(d) ngﬂr}oo [Vtn g gy
= C() lm_[unlpy
= O(d) llullpy- (C.25)

Let us now prove that any function u € Hq,0(€2) can be extend to R? to a function in BV(R?)
with |lullgy < [lull; ; aq- This result, which will be satisfied under a regularity constraint on the
mesh, is a consequence of Lemma C.7 which provides estimates on the jumps of the functions
u e HM’()(Q).

Let M be a triangulation of Q such that 6r¢ < 6y (where 0 is defined by (C.1)) for some
positive constant fy. Let u € Hp,0(2). We extend u by 0 outside Q so that u € L}(R?). For all
¢ € C(RY)?, we have:

<Vu,d)>pgpz—/ udivqbdw:—/udivq’)dw:— Z / udiv ¢ dz
R4 Q K

i
:K;(Aw.qsdm—/%uqb-nda(w))
:K;A(Avu.mm_gg;m 16 do(a)) a0
—KZE;M/KVu-cﬁdw;e:g [ulo & s do (@)

(% / Vuda + 3 JAICHEC) [

< C(d, o) ||U||1,1,M ||¢||L00(Rd)

by definition of [lul[, ; ,, and thanks to inequality (C.21) (with p = 1). By (C.26), we obtain that
a function u € Hpq,0(Q2) (extend by 0 outside Q) belongs to BV(R?) with :

[ullgy < C(d, o) ||u||1,1,/v1' (C.27)

Combining (C.27) with (C.25), we therefore have proven the following result:
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Proposition C.8 (Discrete continuous injection W1 c Ll*). Let M be a triangulation of Q0 such
that O < Oy, with 8y > 0. There exists a constant C = C(d, 0y) such that:

[ullpis @) < Cllully 1, a0 Vo € Hago(92), (C.28)
We may now prove a discrete counterpart to the Sobolev inequality (C.19) for 1 <p < d:

Proposition C.9 (Discrete continuous injection W1? C L' for 1 < p < d ). Let M be a
triangulation of Q0 such that Opq < 0y, with 6y > 0. Assume that 1 < p < d. Then there ezists a
constant C' = C(p,d, 0y) such that:

[ullgo ) < Cllully, p ao Vi € Hato€2), (C.29)

where p* = . In addition, one has C(p,d,0y) — +o00 as p — d.

dp
d—p
By interpolation of Lebesgue spaces, we have the following corollary, a consequence of which is
a discrete Poincaré inequality.

Proposition C.10. Let M be a triangulation of Q such that O < 0y, with Oy > 0. Assume that
1 <p<d. Then, for all q € [p,p*], there exists a constant C = C(p,q,d,0y) > 0 such that:

lullLeqy < Cp, g, d, Bo)llully p ag Yo € Hato(92). (C.30)
For q = p, this inequality is called the discrete Poincaré inequality.
Proof of Proposition (C.9). Let p such that 1 < p < d. Let v € Hpq,0(©2) which we extend by 0
outside Q. Let o > 1. Since w is smooth on each simplex K, |u|® is also smooth and one has

V|u|* = asgn(u)|u|*~*Vu on K. Performing the same calculation as in (C.26) with the function
|u|%, we obtain, for all ¢ € C°(R9)<:

Ol dyprp < (X[ 9l de+ 30 [ 17l a0 @) 19l e

KeM el
(X [ 1911 dz + 0 Cp.d.0) [l Pl i) [y (€:31)
KeMm

thanks to inequality (C.22) of Lemma C.7. Moreover we have:

> / V|u*|de <a Y / u|® | V| de.

KeM KeM

Applying Holder’s inequality to the integral and then to the sum, we obtain (with % + ﬁ =1):
1

/ V[l de
KeM

7 -1
Z / [P’ (= 1) da: Z / |Vu|Pd$ ’ :aHuHi‘p/(a,l)(Q) lully,p At

KeM KeM

1
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We inject this inequality in (C.31) which yields that for all u € Hpg0(R2) and all & > 1, we have
lul* € BV(R?) avec |||[u]*]|gy < a (1+ C(p,d, b)) ||uH:;(1a,1) [ully, . aq- Inequality (C.25) applied
to |u|® then gives:
«@ o a—1
HUHLM*(Q) = ||ul ||L1*(Q) <al'(p,d, 90)||U||Lp'<a—1>(9) HU||1,p,M'

We then chose « such that a.1* = p/(a—1) i.e.a = p’ /(p — 1*) which gives (C.29) with p* = a.1* =
p'1*/(p' — 1*) = pd/(d — p). We may check that & > 1 and a C’(p,d,60y) — oo as p — d because
a—o0oasp—d. O

Finally, for p > d, we have the following result.

Proposition C.11 (Discrete continuous injection WP C L4 for p > d ). Let M be a triangulation
of Q such that Op < 0y, with 6y > 0. Assume that p > d. Then, for all q¢ € (p,0), there exists a
constant C'= C(p,q,d,0) > 0 such that:

ull ey < Cllully a0 Vo € Hago(). (C.32)

Proof. Let ¢ € (p,o0) and let 1 < p; < d such that pt = ¢ (such a p; always exists because
pf — o0 as p1 — d). Applying Proposition C.9, we obtain that for all u € Haq (), ||u||Lq(Q) <
C(p1,d,00)||ully,,, rq- Then using Hélder’s inequality, we have [lul, , 1 < C(p,p1) [[ully, ) ar-

C.5 Compactness results

In this section, we prove a discrete counterpart to Rellich’s compactness theorem. We obtain this
result as a consequence of Kolmogorov’s theorem which we recall (see [2] for a proof).

Theorem C.12 (Kolmogorov). Let 2 be an open bounded subset of R, d > 1,1 < p < oo and
A CLP(Q). Then A is relatively compact in LP(Q) if, and only if, there exists an extension operator:

P: A — Lr(RY
u +— P(u)

satisfying the following properties:
1. P(u) = u almost everywhere on §Q, for all u € A,
2. The set {P(u), u € A} is bounded in LP(R?),
NP (- +y) = P(wllypray = 0 as y — 0, uniformly with respect to u € A.

C.5.1 Bounded sequence in the discrete W' norm : compactness in L'

We first establish an estimate on the translations of discrete functions u € Hpq 0(€2).
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Proposition C.13 (Translations in L'). Let M be a triangulation of Q such that Op < 6y, with
0o > 0. Then:

lul- +y) = ullpr gy < 191 C(d,00)[ully, 1, pp> Y € Haro(€2), Yy € RY,

where u € Hpaq0(Q) is extend to RY setting u = 0 outside 0, and |y| is the euclidian norm of
y € R%.

Proof. Let u € C°(R?). For all z, y € R%, we have:

(@ + y) — u(@)| = ’/:Vu(sc—l—sy) yds| < |y|/01 Vu(z + sy)| ds.

Integrating with respect to & and using Fubini’s theorem, we obtain:
(. + ) = ullps ) < ly] / 9uldz = [y] [ Vul e (C.33)

By the density of C>°(RY) in WH1(R?), inequality (C.33) holds true for functions u € W (R?).
Then proceeding as in the proof of Proposition C.8, we prove that we can extend the result to
functions u € BV (R?):

lul- +9) = ullps gy < [yl lullgy,  Yu€ BV(RY).

Now let u € Hpq,0(Q2) which we extend by 0 outside 2. According to (C.27), we have u € BV(R?)
with [[ullgy < C(d,0) [lull; 1 pq which yields the result. O

We deduce the following result which is a discrete counterpart of the compact injection of
WH(Q) in L1() for a bounded subset 2.

Theorem C.14. Let (M,,)nen be a sequence of reqular triangulations of Q i.e. a sequence satisfying
O, < b for alln € N with 6y > 0. For alln € N, let u,, € Hpq,, o which we extend by 0 outside 2.
Assume that there exists C' € R such that [[u,l; ; o, < C,Vn € N. Then there exists a converging

subsequence of (un)nen in LY(R?) and therefore in L1 (£2).

Proof. We apply Kolmogorov’s Theorem to the set A = Upen{un}. The operator P is the extension
by 0 outside €. Hypothesis 1. is satisfied. Moreover Proposition C.8 shows that the sequence
(tn)nen is bounded in L' (€2) and therefore in L!(2) and in L' (R?) since 1* > 1 and Q is bounded.
Therefore, hypothesis 2. is also satisfied. Finally, thanks to Proposition C.13 and to the fact that
lunlli 1 m, < €5 Vn € N, we see that [lun(.+¥) = tn|lppgsy = 0 as y — 0, uniformly with
respect to n € N. Kolmogorov’s Theorem therefore applies and gives the existence of a converging
subsequence of (u,)nen in L'(R?) and therefore in L*(). O
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C.5.2 Bounded sequence in the discrete W'? norm: compactness in L?

Theorem C.15. Let 1 < p < 0o. Let (My)nen be a sequence of reqular triangulations of 2 i.e. a
sequence satisfying Oa,, < 0o for all n € N with 0p > 0. For alln € N, let u, € Hpy, 0 which we
extend by 0 outside ). Assume that there exists C € R such that [lu,ll; , , < C, Vn € N. Then

there exists a converging subsequence of (U, )nen in LP(RY) and therefore in LP(Q).

Proof. Since  is bounded, the fact that [lun ||, , rs, < C, Vn € N combined with Holder’s inequal-
ity, shows that the sequence ([|unl; ; oq, Jnen is bounded. Thus, the sequence (tn)nen is bounded

in L' (Q) and therefore in L'(Q) and in L'(R%). We can apply Theorem C.14, which yields the
existence of a subsequence (uy,)nen, still denoted (uy,)nen, which converges in L!(Q) towards some
function u € L1(€Q).

We conclude the proof as follows. Invoking Proposition C.9 or Proposition C.11, we get that
(un)nen is also bounded in L%(Q2) for some ¢ > p. Upon extracting a new subsequence, we can
assume that w, — v with v € L7(Q). Since the distributional limit is unique, we have u = v i.e.
u € L4(Q). Interpolating L? between L and LY, we get:

1—
ot — u||m> <l = ully g llun — wlltofey
where 3 € [0, 1] satlsﬁes 1 — 34+ =5 This proves that u, — u strongly in L?(Q). O

C.5.3 Regularity of the limit

At the continuous level, the strong limit in LP(2) of a sequence of functions which is bounded in
Wé’p () is actually in Wé’p (©2). We prove that this still holds true for converging sequences of
discrete functions associated with a sequence of refined meshes.

Theorem C.16. Let 1 < p < co. Let (My)nen be a sequence of regular triangulations of £ i.e.
a sequence satisfying Opq,, < 0o for alln € N with 8y > 0. For alln € N, let u, € Hpq, 0 which
we extend by 0 outside 2. Assume that there exists C' € R such that ||lunl|, , , < C, Vn € N.
Assume that haq, — 0 as n — +oo. Then:

1. There exists a subsequence of (uy )nen, still denotes (uy,)nen, which converges in LP () towards
some function u € LP(Q).

2. The limit u belongs to Wé’p(Q) with [Vully,q) < C.
3. The sequence (V am, Un)nen weakly converges to Vu in LP(Q).

Proof. The existence of a subsequence of (uy,)nen, still denoted (uy,)nen, which converges in LP(2)
towards some u € LP(2) is guaranteed by Theorem C.15. Extending w, and u by 0 outside 2, we
have u,, — u in LP(R?). Let us prove that V , u, weakly converges to Vu in LP(R?).

We have
IV Mo tnllpe ey = 1V Mmanllpe ) = lunlly pag, < C-
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Moreover for all ¢ € C°(R%)4:

/ V m, Uy - ¢dx = /Vun ¢dx
R KeM,
KEZM /undlv¢dw+/ un(p.ndg(a}))

R4
with

R(“na¢): Z /[un}a(b anrdJ Z/una d) (bxa)) nKUdU( )

0€E, V7 o€&n

since the integral of the jump of u,, € Haqo(2) across o is zero. Applying Hélder’s inequality, we
see that for all 1 < p < oo

1
R(un )| < (;g;lhg_ljﬁ\[unbwpdo

Observing that p’ = p/(p — 1) and using inequality (C.21) we get:

-

Z/hpw olao)” do(a))’

oe€,

R

R ) < Cd.to) il i, (3 [ hold = dlan)l” dotz))”

oeéy,

Since ¢ is smooth, we have [p(z) — ¢(@o)| < hr, V@l ga) for all z € 0. Hence, for all
l<p<oo:
[R(un, ¢)| < Chm,,

and a similar results holds for p = 1. Since u,, — u strongly in L?(R?), we obtain that for all
¢ € C°(RH™:

Vm,u-¢pde — — udivegdxe, asn — +oo,
Rd Rd

and by density, V o, u, — Vu weakly in LP(R?) thus in LP(£2). Since for all n € N,
IV Mo tinllpo ey = llunlly pag, <6
we deduce that Vu € LP(R?) with [Vullgeray = [Vullpg) < C. Since u = 0 outside €2, this

implies that u € Wy () with IVullgpq) < C. O
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